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Abstract

Distributed query and transaction processing has been an active field of research ever since
the volume of data to be processed outgrew the storage and compute capacity of a single
machine. For decades, distributed database systems have been designed and implemented
under the assumption that the network is relatively slow compared to the local, in-memory
processing speed. In recent years, high-performance networks have become a key element in
database appliances and data processing systems to reduce the overhead of data movement.
Many of these modern networks offer new communication primitives and use Remote
Direct Memory Access (RDMA) — a hardware mechanism through which the network card
can directly access parts of main memory without involving the processor — in order to
achieve low latency and high throughput. However, these performance advantages can only
be leveraged through thoughtful design of the distributed algorithms, in particular through
careful management of the RbMA-enabled buffers used for transmitting and receiving data,

and through interleaving computation and network communication.

In this dissertation, we analyze the impact of this new generation of networks on data
management and processing in clusters of all sizes. For query processing, we focus on the
implementation of hardware-conscious, distributed join algorithms, in particular the radix
hash join and the sort-merge join. We evaluate these join algorithms on modern rack-scale
systems with different interconnect technologies and, at large scale, on a supercomputer
with hundreds of machines. Regarding transaction processing, we study the performance of
lock-based concurrency control mechanisms and establish a new baseline for a conventional

lock table manager running on thousands of processor cores.



Our findings show that the proposed algorithms can take advantage of modern communi-
cation primitives and are able to scale with increasing system resources. This dissertation
is one of the first publications to combine traditional database algorithms with the tech-
nologies used in supercomputers and to evaluate these algorithms on thousands of cores,
a scale usually reserved to large scientific computations. Furthermore, we provide detailed

performance models for each of the proposed algorithms.

Using the insights gained from the implementation of the algorithms, this dissertation
proposes several new communication primitives designed to overcome the limited pro-
gramming interface of current RDMA-capable networks and to provide directions towards
the development of novel communication abstractions for high-performance networks tar-

geting data- and communication-intensive applications.
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Zusammenfassung

Verteilte Abfrage- und Transaktionsverarbeitung ist ein aktives Forschungsgebiet seitdem
das Volumen der zu verarbeitenden Daten die Speicher- und Verarbeitungskapazitét einzel-
ner Maschinen tberschreitet. Seit Jahrzehnten wurden verteilte Datenbanksysteme in der
Annahme entworfen und implementiert, dass das Netzwerk im Vergleich zu der lokalen
Verarbeitungsgeschwindigkeit relativ langsam ist. In den letzten Jahren wurden Hochleis-
tungsnetzwerke zu einem Schliisselelement in Datenbankanwendungen und Datenverar-
beitungssystemen um die Kosten des Datentransfers zu reduzieren. Viele dieser modernen
Netzwerke bieten neue Kommunikationsmethoden an und verwenden nicht-lokalen direk-
ten Speicherzugriff (Remote Direct Memory Access, RDMA) — ein Hardware-Mechanismus,
iiber den die Netzwerkkarte direkt auf Teile des Hauptspeichers zugreifen kann, ohne den
Prozessor miteinzubeziehen — um eine geringe Latenz und einen hohen Datendurchsatz zu
erreichen. Diese Leistungsvorteile konnen jedoch nur durch ein gut durchdachtes Design
der verteilten Algorithmen genutzt werden, insbesondere durch sorgfiltige Verwaltung der
fiir die Ubertragung verwendeten Puffer und durch Uberlappung von Berechnungen und

Netzwerkkommunikation.

In dieser Dissertation analysieren wir die Auswirkungen dieser neuen Generation von Netz-
werken auf Datenverwaltung und -verarbeitung in verteilten Rechenanlagen aller Grossen.
In Bezug auf die Abfrageverarbeitung konzentrieren wir uns auf die Implementierung von
hardware-optimierten, verteilten Verbundoperatoren, insbesondere auf hash- und sortier-
basierte Losungen. Wir evaluieren diese Algorithmen auf modernen Clustern mit ver-

schiedenen Netzwerktechnologien und, in grossem Massstab, auf einem Supercomputer
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mit Hunderten von Maschinen. Hinsichtlich Transaktionsverwaltung untersuchen wir die
Leistung von sperr-basierten Mehrbenutzersynchronisationsmechanismen und etablieren
einen neuen Referenzwert fiir die Ausfithrung eines konventionellen Transaktionsverwal-

tungssystems auf Tausenden von Prozessorkernen.

Unsere Ergebnisse zeigen, dass die vorgeschlagenen Algorithmen moderne Kommunika-
tionsmechanismen effizient nutzen und mit den Systemressourcen skalieren. Diese Disser-
tation ist eine der ersten Arbeiten, die traditionelle Datenbankalgorithmen mit den in Su-
percomputern verwendeten Technologien verbindet und die vorgeschlagenen Algorithmen
auf Tausenden von Prozessorkernen auswertet, eine Grossenordnung, die normalerweise
nur grossen wissenschaftlichen Berechnungen vorbehalten ist. Dariiber hinaus beinhaltet

diese Dissertation analytische Modelle fiir jeden der Algorithmen.

Auf Basis der gewonnenen Erkenntnisse schlagen wir mehrere Kommunikationsmechanis-
men vor, welche die Einschrankungen jetziger RDMA-fahiger Netzwerke iiberwinden und
die Programmierschnittstelle zukiinftiger Hochleistungsnetzwerke mit neuen Kommunika-

tionsabstraktionen fiir daten- und kommunikationsintensive Anwendungen erweitern.
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Introduction

The majority of business activities such as sales, reporting, analytics, planning, and data
archiving involves the use of a state-of-the-art computing infrastructure. Processing and
extracting meaningful information from data requires a complex combination of data pro-
cessing platforms, database systems, machine-learning applications, and sophisticated data
analysis tools. At the same time, the volume of data that needs to be analyzed and man-
aged by these information systems is increasing at an unprecedented rate. The ability to
efficiently query vast volumes of data and execute a large number of transactions requires
carefully tuned algorithms that take advantage of all the resources made available by the

underlying hardware, including the network infrastructure.

Although the economics of main memory technologies have enabled a steady increase of
the memory capacity of modern multi-socket servers, managing large amounts of data re-
quires the use of a distributed computing infrastructure that enables users to scale out the
memory and compute capacity simultaneously. In these systems, efficient inter-machine
data movement is critical, forcing database algorithms to be aware of machine boundaries
and to employ communication patterns suited for the underlying network technology. For

a long time, rack-scale clusters have been a platform of choice for distributed data pro-
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cessing. These systems are composed of several multi-core machines connected by a high-
throughput, low-latency network. High-performance interconnects can significantly reduce
the costs of small and large data transfers by offering high bandwidth and low latency.
However, these performance advantages can only be leveraged through thoughtful design
of the distributed algorithms and through the correct use of all available communication

primitives and mechanisms.

Today, fast interconnects are no longer limited to rack-scale systems and are being intro-
duced in many data centers and large compute clusters. Cloud computing providers are
starting to equip their machines with high-speed interconnects. In the process, they ex-
pose new network interfaces to their customers. Thus, it is apparent that new techniques
and algorithms need to be able to run on hundreds of machines and thousands of cores,
using the processor, memory, and network resources efficiently. Therefore, it is a natural
question to ask how to design scalable database systems for query and transaction pro-
cessing that can run on large scale-out architectures in which the machines are connected

by modern, high-speed networks.

1.1 Motivation and Challenges

The introduction of high-performance networks has led to new design possibilities and
implementations for data management systems [JSL*11, DNCHI14, KKA14, RMKN15,
LPEK15, Rod16, BCGT16, LDSN16, BAH17, MGBA17, Mak17, BKG'18] and database
algorithms, such as distributed joins [FGKT09, FGKT10, BLAK15, RIKN16, BMS*17].
Although many applications can benefit from the increased throughput and reduced la-
tency of this new generation of network technologies, their full potential can only be
harvested by employing the new communication primitives these networks provide. For
example, several low-latency, high-throughput networks provide Remote Direct Memory
Access (RDMA) as a light-weight communication mechanism to transfer data. RDMA is
essential for high-performance applications because data is immediately written or read by

the network card, thus eliminating the need to copy data across intermediate buffers inside
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the operating system. Furthermore, one-sided operations make it possible to place data at
specific locations in remote main memory. Applications that can use this Remote Memory
Access (RMA) programming model have the potential to eliminate many copy operations
within the application logic, thus further increasing performance. In order to implement
efficient data transfer and coordination mechanisms, the design of the underlying database

algorithms needs to address several crucial challenges.

Connection and Buffer Management: Conventional distributed applications rely
on the network stack within the operating system to manage buffers used for communica-
tion. For example, when executing a send call, data is copied from the application into the
network stack. Within the stack, the content of the message is typically copied from one
layer to the next until it has been divided into small packets. On the receiving side, these
packets are being reassembled and, when a receive call is executed, copied into a user-
level buffer. This whole process is controlled by the operating system and the application
has no direct influence on these operations. On the other hand, RDMA-enabled network
cards can read and write data directly from and to main memory without involving the
network stack. In this model, the operating system is completely bypassed. That means
that it is the responsibility of the application to explicitly manage the buffers involved in
the communication. In most network implementations, the application needs to register
a communication buffer with the network card before it is accessible over the network to
RDMA operations. Once registered, the section of memory that can be used for Rbma
transfers is of fixed size that often can only be changed by first de-registering the buffer
and then registering it a second time with the new desired size. These buffer management
operations usually incur a significant overhead [FA09, Frel0]. Therefore, applications need
to be designed in such a way that most of their communication buffers can be allocated
at system start-up time to avoid expensive registration calls at runtime. Furthermore,
algorithms should re-use already registered RDMA-enabled buffers whenever possible, oth-
erwise the overall application performance might degrade significantly. Besides registering
communication buffers with the network card, many networks require an elaborate setup
of connection-related objects such as queue pairs, completion queues, and receive queues.

To amortize these costs, algorithms should setup all necessary connections ahead of time.
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Direct Data Placement: When using one-sided RMA programming, the initiator of a
request can directly read from or write to specific locations of remote memory. Applica-
tions that have tight control of where data is located can potentially eliminate expensive
application-level copy operations. On modern networks, remote data accesses do not in-
volve the remote processor as RMA requests contain all necessary information for the
network card to directly access and transmit (or overwrite) the desired content. From a
technical perspective, the initiator of a request must be in possession of the address (or sim-
ilar identifiers) of the remote buffer before initialing a request. The algorithm needs to be
designed in such a way that this information is distributed to all the processes that require
access to the RbDMa-enabled buffer. On the application level, algorithms using one-sided
RMA operations need to carefully lay out the data inside of these buffers. Management
of the content of the buffers usually involves maintenance of auxiliary data structures,
such as indexes or histograms, in order to determine the location of a specific piece of
information within the buffer. Furthermore, the content of the communication buffers can
be accessed and modified by any component in the system that has the necessary cre-
dentials. Similar to parallel applications running on large multi-core processors, access to
these shared buffers needs to be synchronized and appropriate coordination mechanisms

need to be in place.

Interleaving of Computation and Communication: In contrast to traditional
socket programming, many RDMA-capable networks are asynchronous and most of the
network operations are non-blocking. Information related to a data transfer is wrapped
into a work request object that is posted to the appropriate queue. These requests are
taken from the queue and executed by the network card without any involvement of the
processor. This means that the processor remains available for processing while a transfer
is taking place in parallel. Applications built for traditional networks are often designed
to wait for the transfer to complete before they continue processing. Although the time
required to transmit a specific amount of data is shorter when using high-speed networks,
the processor would still be idle for a significant period of time, leading to poor utilization
of the resources. This problem is amplified for applications that have to transmit vast

amounts of data during their processing phase. In order to avoid long processor idle times,
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modern applications need to be designed such that they can interleave computation and
communication. An application needs to be able to continue processing while a network
operation is taking place in parallel. The interleaving of computation and communication
not only leads to better resource utilization, but can also be used to hide parts (or all) of
the communication latency. Given a specific network throughput, applications should be
able to adjust the ratio of compute and communication tasks in order to achieve perfect
interleaving, i.e., a compute task should take up the same amount of time than a network
transfer. Applications that are designed to interleave both aspects can be accelerated

significantly when using high-performance networks [FA09, BAH17].

Network Scheduling: In order to achieve the highest performance possible, the al-
gorithms do not only need to interleave communication with the computation, but also
schedule the communication appropriately. Algorithms need to be aware of the distribu-
tion of the input data, the network topology, and the utilization of the network. How-
ever, the creation of an optimal plan for scheduling communication is not a straight-
forward task, especially when the cardinality of intermediate results is not known ahead of
time [CKJE14, CKJE15, RCP17, LSBS18]. The problem is particularly difficult knowing
that all data transfers are executed by the networking hardware without the involvement
of the operating system. Furthermore, the amount of resources (e.g., queues and work
requests) the hardware can hold at any given amount of time is limited. Therefore, the
algorithms should be designed in such a way that they do not overwhelm the network card
with requests at any given point in time. In addition, the communication patterns should

be such that no contention is created within the network.

1.2 Focus

In this dissertation, we focus on distributed database algorithms for query and transac-
tion processing. We will design and evaluate new variants of the radix hash join, the
sort-merge join, as well as the Two-Phase Locking (2PL) and Two-Phase Commit (2PC)

protocols. All algorithms are targeting the communication primitives offered by high-speed
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interconnects, are designed to use one-sided RMA operations, take advantage of the low
latency and high bandwidth offered by RDMA networks, and interleave computation and
communication. Given the rapid adoption of high-performance networks, we evaluate the
proposed algorithms not only at small scale but also on large supercomputers with several
thousand processor cores. Furthermore, this dissertation provides analytical models that

can be used to predict their performance on future interconnects.

Query Processing: This dissertation focuses on designing and evaluating new dis-
tributed join algorithms, one of the most complex and communication-intensive operators
in query processing. In relational database systems, join algorithms are considered impor-
tant operators that need to exhibit the best performance possible. They appear frequently
in many query workloads and often dominate the execution costs. Therefore, they have
been the topic of several recent publications and many efficient implementations targeting
modern, multi-core processors have been developed [KSCT09, BLP11, AKNI2, BTAO13,
BATO13, LLA'13, Ball4, BTAOlS]. Joins are relevant not only in the context of database
engines but also as a building block in many computational and machine learning algo-
rithms [KNPZ16]. Moreover, there are multiple join strategies, each having different data
processing and communication characteristics. Although having been an active topic of
research for several years, there are opposing views on how to implement join algorithms
on modern hardware. One of the controversies revolves around the discussion whether a
sort- or a hash-based approach is the preferred option when using a large number of pro-
cessor cores [KSCT09, BATO13, Ball4]. In this dissertation, we investigate both strategies
and evaluate two join implementations: (i) the radix hash join, and (ii) the sort-merge
join algorithm. We begin by designing the algorithms for rack-scale systems. In a second
step, we combine the proposed algorithms with the technologies found in high-performance
computing (HPC) systems in order to be able to scale them to hundreds of machines with
several thousand cores. We will discuss the differences and similarities between database
systems and HpPC applications and explain how to combine the technologies found in both
areas of computer science. By focusing on this important operator, this dissertation takes
several important steps towards scaling out the query engines of distributed database

systems. These findings can be used to accelerate a large variety of relational operators.



1.3. Contributions

Transaction Processing: Concurrency control is a cornerstone of distributed database
engines and storage systems. Using an efficient coordination mechanism that supports a
high throughput of transactions is a critical factor for parallel and distributed databases
systems. Having always been a challenging problem, the increase in parallelism arising
from multi-core systems and cloud platforms has motivated researchers and practition-
ers to explore alternative implementations and weaker forms of consistency. The vast
majority of these efforts start from the assumption that Two-Phase Locking (2PL) and
Two-Phase Commit (2PC) are not viable solutions due to their communication overhead
and perceived lack of scalability. Many systems apply a wide range of optimizations that
impose restrictions on the workloads the engine can support. For example, they give up
serializability in favor of snapshot isolation [ZBKH17], impose restrictions on long-running
transactions [KN11, TZK"13, DNNT15], assume partitioned workloads [KKKNT08], or re-
quire to know the read and write set of transactions ahead of time [KKKNT08, TDW*12].
Due to the very different assumptions made, and the wide range of performance lev-
els achieved, these systems are difficult to compare to each other. In this dissertation,
we develop a distributed lock table supporting all the standard locking modes used in
database engines [BHG87, GR92]. We focus on strong consistency in the form of strict
serializability implemented through strict 2PL but also explore other isolation level such
as read-committed, a common isolation level used in many database systems. While the
costs of synchronization and coordination might be significant on conventional networks,
modern networks and communication mechanisms have significantly lowered them. We
show that by using modern communication methods in combination with RbMA-enabled

networks, 2PL and 2PC are a viable solution for large-scale transaction processing.

1.3 Contributions

In the context of large-scale query processing, we investigate distributed join algorithms in
great detail. For workloads with a large number of transactions, we show that hardware-
conscious implementations of a traditional locking system can be used to scale to a large

number of cores. In summary, this dissertation makes the following contributions.
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Algorithmic Contributions and Implementations: Several main-memory hash
and sort-merge join algorithms proposed in the literature are carefully analyzed. Many of
these designs and implementations are targeting a single multi-core server. On top of this
solid foundation, this dissertation introduces several new techniques and important opti-
mizations leading to new, highly tuned, hardware-conscious, distributed join algorithms.
In the context of the radix hash join, we interleave data partitioning and communication.
For the sort-merge join, we develop a mechanism capable of interleaving the sort operation
and the data exchange. Furthermore, we propose solutions to carefully lay out the data
inside the buffers such that the content can directly be accessed using one-sided RMA oper-
ations. The optimizations reduce the amount of synchronization necessary during the data
exchange, the most critical phase of the join algorithms. These techniques ensure that the
proposed algorithms can scale to thousands of processor cores and hundreds of machines.
For distributed concurrency control, we operate a conventional lock table and commit
protocol. While these algorithms are already widely used in a lot of database engines,
the implementation proposed in this dissertation is novel. We highlight how to structure
the communication and manage the RDMA-enabled communication buffers. We make use
of notified RMA operations as well as fast one-sided atomic operations to implement the
concurrency control mechanism. The system supports all lock modes found in multi-level
granularity locking, including intention locks. The proposed communication layer ensures
that messages get delivered with very low latency. Because of the wide-spread adoption
of lock-based concurrency control mechanisms, this work makes significant contributions
towards scaling out existing, transaction-oriented database systems without compromising

on performance nor isolation level guarantees.

Combining Database Systems and HPC Applications: This is one of the first
dissertations that discusses the use of technologies found in high-performance comput-
ing (Hpc) systems in order to scale out database algorithms on modern hardware and
networks. In the implementation of our algorithms, we use the Message Passing Inter-
face (MpI1), a de-facto standard communication layer used by many HpC applications,
e.g., large scientific applications. In the context of HPC, the interface makes applications

portable between different supercomputers that use different interconnect technologies.
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Using MPI in the context of a database or data processing system is not a straight-forward
task. Although the performance of both, database systems and scientific applications, de-
pends significantly on the behavior of the network, both types of systems often differ
significantly in their architecture and the communication patterns that they exhibit. As
a result, many MPI implementations are optimized for specific workloads. We show that,
despite these optimizations, the use of a high-level communication library brings many
advantages for data processing applications. First, using a library makes the developed
source code portable to new architectures and networks. Second, it offers a set of sophis-
ticated communication operations that have proven to be useful when running a database

system or a data processing application at large scale.

Effects of Modern Networks on Data Processing Systems: We evaluate the al-
gorithms presented in this dissertation on a variety of high-performance networks. We use
several versions of InfiniBand, each having different bandwidth and latency characteris-
tics. For the large-scale experiment, we conduct them on a high-end Cray supercomputer.
This machine has a proprietary RDMA-capable network with a high bandwidth and a low
latency. Many hardware parameters influence the performance of the proposed algorithms
such as the size of the communication buffers, the number of threads involved in the com-
munication, the choice of the communication library, and the types of operations used.
The dissertation explores these parameters in a systematic way and studies their impact

on network bandwidth, network latency, and overall application performance.

Comparing Sort- and Hash-Joins on Thousands of Cores: With the advent
of processors with many cores and large Single-Instruction-Multiple-Data (SIMD) vectors,
it has been argued that a NumMma-aware (Non Uniform Memory Access) sort-merge join
algorithm is becoming the preferable option compared to the radix hash join [KSCT09].
These predictions are mostly based on mathematical models. The dissertation analyzes
these claims at large scale on several thousand processor cores in which memory exhibits
strong NUMA effects, i.e., despite fast networks, remote RMA accesses still have a higher
latency than accesses to local main memory. This dissertation contributes to this discus-
sion and shows experimentally that, although the radix hash join has superior performance

in small deployments, the sort-merge join is more scalable. This behavior is due to the
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ratio of computation and communication and the ability of the sort-merge join to put a

more predicable load on the network, making scheduling decisions easier.

A new Baseline for Large-Scale Concurrency Control: Concurrency control
has been a cornerstone of distributed database engines and storage systems. To achieve
the highest level of isolation guarantees, many existing database engines use a lock-based
concurrency control mechanism. However, distributed locking has not been perceived as
a viable solution for distributed database systems. One of the main reasons for this is
the latency overhead associated with accessing a remote lock when using a conventional
network. In this dissertation, we show that, although remote accesses are more costly than
modifying local memory, modern networks have reduced the latency to a point that a dis-
tributed lock-based concurrency control mechanism can support even the most demanding
workloads. The result from these experiments is that, for Tpc-C, 2PL and 2PC can be
made to scale to thousands of cores and hundreds of machines, providing a throughput
significantly higher than the fastest official TPC-C result published to date. Therefore,

this work establishes a baseline for concurrency control mechanisms on thousands of cores.

Performance Models: For all the algorithms presented in this dissertation, we provide
analytical models. These models give us a lower bound of the execution time of the
algorithms, respectively the maximum achievable throughput. We use these models to
judge the efficiency of our implementations and make predictions on the performance of
the algorithms as networks get faster. Using mathematical models is particular important
for large-scale experiments in order to identify potential bottlenecks and analyze the effects

arsing from large-scale distribution.

1.4 Outline

This dissertation is divided into seven chapters and is structured as follows:

Chapter 2: This chapter provides the background material and gives an overview of the
technology trends in the three areas of computer science research that are combined in this

dissertation: (i) high-performance computing systems, (ii) high-performance networks, and

10
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(iii) database and data processing systems. The overall goal of this chapter is to convey

an understanding for each of these research topics.

Chapter 3: In this chapter, we introduce the distributed radix hash join and sort-merge
join. We describe how these algorithms organize their communication, i.e., connection and
buffer management, RMA memory accesses, and the interleaving of computation and com-
munication. We evaluate these algorithms on rack-scale computers with two generations
of InfiniBand networks: (i) 4x QDR, that offers a throughput of 32 Gbit per second, and
(ii) 4x FDR, that can transmit data at 56 Gbit per second. This allows us to study the

performance of the algorithms as the network throughput increases.

Chapter 4: Using the technologies found in HpC systems, we modify the rack-scale
join algorithms to use MPI as their communication library. This enables the algorithms to
run on high-end Cray supercomputers with thousands of processor cores. We analyze the
behavior of the radix hash and sort-merge join algorithms on up to 4096 cores, compare
both strategies, evaluate the costs of large-scale distribution, and discuss the importance

of network scheduling.

Chapter 5: In this part of the dissertation, we evaluate a lock-based concurrency control
mechanism. We show that a conventional lock table and commit protocol, combined
with a low-latency communication infrastructure, is a scalable solution for large-scale
coordination and transaction management. Similar to the previous section, we explain
how different system components use MPI to communicate and evaluate the algorithms

on a Cray system with thousands of processor cores.

Chapter 6: Based on the experiences from the large-scale experiments, this chapter
provides an overview of alternative designs for the proposed systems and algorithms. In
this chapter, we pay particular attention to future networks. We consider not only faster
interconnects with a higher throughput and a lower latency, but also networks that offer

new communication primitives designed to support distributed data processing.

Chapter 7: In the last chapter, we take a look at the contributions and results obtained
in the dissertation. All our findings and conclusions are listed and summarized. The

chapter discusses future research directions before presenting the final concluding remarks.

11
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1.5 Publications

Part of the work presented in this dissertation has been published in leading database

conferences and journals. This document includes results from collaborations with Simon

Loesing, Ingo Miiller, Timo Schneider, Feilong Liu, Hideaki Kimura, Garret Swart, Spyros

Blanas, Donald Kossmann, Torsten Hoefler, and Gustavo Alonso.

The following papers and articles constitute a preliminary and condensed form of the

material presented in this document:
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Background

This thesis combines algorithms, technologies, and methodologies from (i) high-perfor-
mance computing, (ii) high-speed networks, and (iii) distributed data processing systems
in novel ways. Therefore, this chapter provides the required background materials from

these three areas of computer science.

Starting with high-performance computing (HpPC), we explain the importance of perfor-
mance models and explore the architecture of large-scale clusters and supercomputers.
We discuss the role of the Message Passing Interface (MpI1) for scaling applications to
thousands of machines. Next, we analyze the features and communication primitives of-
fered by modern networks, focusing on new hardware mechanisms such as Remote Direct
Memory Access (RDMA) and programming models for these interconnects. We have a
look at commonly used interfaces and the abstractions they provide. Last, but not least,
we give an overview of recent developments in the area of distributed database and data
processing systems. We pay special attention to analyzing the impact of emerging network

technologies on the development of new database algorithms.

13



Chapter 2. Background

2.1 High-Performance Computing

As the name suggests, high-performance computing (HPC) is a discipline that strives to
achieve and deliver much higher performance than one could get out of a typical server
or small cluster. Science and technology plays an important role in improving the quality
of life. The development of many modern devices and important advances in medicine
are only possible if researchers are able to solve numerous scientific and engineering chal-
lenges in an efficient way. HPC plays an important role in solving such problems through
computer modeling, simulation, and analysis. Instead of spending precious time conduct-
ing real-world experiments, researchers can describe their problems and solutions using
mathematical models, translate these models to efficient algorithms, and launch their sim-
ulations on a supercomputer. The more efficient the machine operates, the faster the

turn-around time is and the more insights can be gained in a given amount of time.

However, the computing power required to advance the state-of-the-art in science, tech-
nology, and business is growing at a significant rate. In order to meet these demands, an
important aspect of HPC is the aggregation of computing power, usually in the form of
a high-end supercomputer. These machines are composed out of thousands of machines,
referred to as compute nodes, that are connected through a high-performance intercon-
nect. In order to build a supercomputer and run it efficiently, HPC brings together several
aspects of computer science and computer engineering such as micro-architecture, algo-

rithms, applications, and system software.

The workloads targeted by HPC systems are mostly composed of large scientific applica-
tions that are usually characterized by having many floating-point and memory operations.
Typical users of HPC systems are physics and biology research projects. For example,
many supercomputers are used to run weather/climate predictions and protein folding
simulations. These large scientific codes are optimized to run at extreme scale and often

require significant investments at a national level.

14



2.1. High-Performance Computing

2.1.1 Performance Modeling

Software development for HPC applications focuses on correctness, reliability, productiv-
ity, and scalability, but also places great emphasis on achieving the highest performance
possible. In order to be able to determine how fast a computation can be, the HPC commu-
nity relies on extensive modeling techniques [KAHT01, SCW*02, AV06, HGTT10, HoelO0,
LMV15], including models for one-sided network programming abstractions [DLHV16].

The importance of modeling is also reflected throughout the whole development process
and the tool-chains that are used. In addition to the traditional debuggers and profilers, ad-
vanced parallel performance analysis tools are often necessary to understand the behavior
of applications on large HPC systems. NETGAUGE [HMLRO07] is a high-precision network
parameter measurement tool that can be used to analyze the performance of common
communication patterns. LiBSCIBENcH [HSL10, HB15] is a framework that facilitates
the adoption of statistically sound performance measurements for massively parallel Hpc
applications. HPCTOOLKIT [ABFT10] provides a measurement and analysis framework to

track application performance, collect call stack profiles, and display space-time diagrams.

Abstract performance models are often used to determine lower bounds on the execution
time and analyze the impact of large-scale distribution. While these models are generally
less accurate in predicting absolute performance numbers, they are useful in predicting the
behavior of the application on different or future systems. An alternative to creating an
analytical model is to benchmark the code on each target architecture. While this leads
to very accurate measurements for one particular type of machines, it is difficult to extend
the results to include other systems and configurations. In order to accurately predict
the execution time while keeping the complexity of the model at a minimum, a hybrid
approach is often used. Empirical modeling is employed to create performance models
that rely only in part on benchmarks of specific sections of the code. PEMOGEN [BH14b]
is a compilation and modeling framework that automatically instruments applications
to generate performance models during program execution. Instead of a human expert
with advance knowledge of the application creating a model, some approaches suggest

using events and performance counters (e.g., tracing memory accesses) to determine the
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behavior of an application on a specific platform and draw conclusions about the expected

performance on other systems.

2.1.2 High-Performance Computing Systems

HPc involves is the use of large supercomputers and parallel processing techniques for
solving complex computational problems. These systems are scale-out architectures that
can deliver exceptional performance through the concurrent use of a large number of com-
puting resources. Usually the performance of a supercomputer is measured in the number
of floating-point operations per second (FLOPS) that the machine is able to perform. The
Topr500 project [Topl8] ranks the most powerful supercomputers in the world. One com-
mon characteristic of the fastest and most efficient machines is the use of a high-bandwidth,

low-latency network to connect the nodes, clusters, and specialized hardware devices.

Supercomputers have a large number of nodes and, in general, most of these nodes are
configured identically. Access to the compute nodes is often restricted and programs are
submitted in batches, called jobs, to a cluster management system that is responsible for
assigning compute resources to a job, scheduling it, and starting the desired applications.
The management system monitors the job and in case of errors (e.g., segmentation faults,
node failures) aborts the execution. The input data is generally loaded through a shared
network-attached file system to which every node has access. The result of the computation

is stored in the same way.

Although the exact configuration of each supercomputer is unique, many have a hierarchi-
cal architecture. In the system that we are using in the experimental evaluation, each rack,
also called a cabinet, can be fitted with several chassis. A chassis provides power to a dozen
or more compute blades, which in turn are composed of the compute nodes. The compute
nodes are connected through a high-throughput, low-latency network usually forming a
Dragonfly [KDSAO08] or Slimfly [BH14a] network topology. In the beginning of HPC, many
supercomputers contained custom and highly specialized components. Today, despite the
large amount of compute power packaged as one large installation, the individual compute

nodes used in supercomputers resemble commodity hardware, i.e., regular X86 or ARM
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processors with several gigabytes of main memory. The network features that have been
available exclusively in HpC for a long time (e.g., RDMA, remote atomic operations) have
found their way into many network technologies that are being offered commercially and

that can be found in a lot of small-sized clusters and data centers.

2.1.3 Message Passing Interface

Given that the network plays an important role in many high-performance distributed ap-
plications, it is important to understand the origins of the Message Passing Interface (MP1),
the de-facto standard for writing parallel HPC applications. MP1 [Mes12] is the result of
standardization efforts to make application code portable between systems with different
interconnect technologies. The first version of the interface was released in 1994. Since
then, it has been expanded twice, resulting in MPI1-2 in 1997 and MPI1-3 in 2012. Respon-
sible for the development of the standard is the MPI Forum that is composed of computer
scientists and engineers with various backgrounds, system vendors, supercomputer manu-

facturers, researchers, and representatives from large research laboratories.

The interface description places great emphasis on attributing precise semantics to the
different methods it provides, and tries to expose a rich set of high-level operations to the
application developer. Although it has been designed for large scale-out architectures, it
can be used on a variety of different compute platforms, from laptops to high-end super-
computers. The reason why MPI can be found on many types of systems is that the stan-
dard consists just of the interface description. This allows the developers to create many
different implementations, each optimized for a specific system. Many supercomputers
ship with a highly optimized MPI implementation. There are also several general-purpose
implementations that support a variety of commercially available networks, the two most

popular implementations being OPENMPI [Opel8a] and MVAPICH [Thel§].

Most MPI implementations support applications written in the C programming language
and in Fortran. Already the first release of the standard provided bindings for both
languages. In addition to point-to-point message passing methods, the initial standard in-

cluded basic collective operations such as reduce operations and type support to describe
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the data layout in main memory. Later iterations of the standard extended the function-
ality offered by MPI1 beyond that of a pure message-based communication library. Most
notably the current version of the interface, MP1-3, added support for new operations made
possible by RDMA-capable networks such as one-sided Remote Memory Access (RMA) and
remote atomic operations [GHTL14, HDT*15].

When writing an MP1 application, the developer is shielded from the complexity of the
distributed environment and is — to a large extent — unaware of the physical location of
the different processes that make up his program. Many implementations have different
communication mechanisms and it is the responsibility of the library to select the most ap-
propriate method of communication for each message and pair of processes. For example,
an MPI implementation would distinguish between small and large messages. For small
messages, the eager protocol is used. Its goal is to provide low latency. The assumption is
made by the sending process that the receiving process can store the message in a special
buffer. This buffer is sometimes referred to as a mailboz. Therefore, as soon as the sender
invokes the send operation, the content of the message is transferred to this pre-allocated
intermediate buffer at the receiver side. This method can be used as long as the size of
the messages does not exceed the capacity of the mailbox. The rendez-vous protocol is
used for large messages. In this protocol, a synchronization phase is required in which
the receiver provides an RDMA buffer large enough to receive the message in its entirety.
The content of the message is then directly transmitted to that buffer using a zero-copy
transfer. The rendez-vous protocol can therefore lower the costs of large data transfers as
it avoids intermediate copies of the data at the expense of a higher latency introduced by
the synchronization phase. In addition to different protocols for different message sizes,
many implementations use shared memory for communication between processes on the

same machine and network-based primitives for inter-node communication.

The fundamental unit of parallelism in MPI is the process. The degree of parallelism of
an MPI application can be specified at start-up time (or the time of submission of a batch
job) by specifying the desired number of processes. The MPI runtime system is in charge
of instantiating the requested number of processes running the same code on all machines

that have been assigned to the job. Each process is identified by a rank, i.e., a unique

18



2.2. High-Performance Networks

integer number that identifies the process. When communicating with another process, the
developer has to indicate the rank of the target process. Details how to design and develop

programs with MPI and related networking interfaces are explained in Appendix B.

2.2 High-Performance Networks

Modern high-throughput, low-latency networks originate from advances made in high-
performance computing (HPC) systems. Myrinet was one of the first high-speed networks
used to interconnect machines in HpC clusters [BCEFT95]. At the time of its release,
Myrinet significantly lowered the processing overhead compared to other network tech-
nologies. It was the first network implementation that offered a mechanism to bypass
the operating system. This bypass mechanism avoids that the content of messages is be-
ing copied across different buffers within the network stack and reduces the number of
context switches. Quadrics was a supercomputer company that developed a proprietary
network [PFHT02]. The Quadrics network introduced a novel mechanism to integrate the
local virtual memory of each node into a global address space and included a programmable
processor in the network interface that could be used to offload application-specific com-
munication protocols to the network card. The Virtual Interface Architecture (VIA) is an
abstract model of a user-level network [MIC97]. VIA introduced the concept of zero-copy
messaging. The content of a zero-copy message is not stored in any temporary buffer.
This approach is different from the operating system bypass mechanism introduced by
Myrinet that does not exclude the use of intermediate staging buffers. VIA is the basis
for InfiniBand, a widely used high-performance network [Inf07]. InfiniBand can be found
in many high-end database appliances and clusters. It uses Remote Direct Memory Ac-
cess (RDMA), a hardware mechanism through which the network card can directly access
all or parts of the main memory of a remote node without involving the processor. RDMA
over Converged Ethernet (ROCE) is a network protocol that brings RbDMA functionality
to conventional Ethernet networks [Inf10]. As the compute nodes in most modern data
centers are connected through Ethernet, ROCE makes it possible to benefit from the ad-

vantages of RDMA while using existing networking infrastructure. The Aries interconnect
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is a proprietary technology used by Cray supercomputers [AKR12]. The Aries device is
a system-on-a-chip comprising several network cards and a router. Each network card
is connected to one compute node and the router is connected to the chassis back plane
and through it to the network fabric. Aries is optimized for large-scale computations,

supporting a large number of compute nodes, a high bandwidth, and a high message rate.

2.2.1 Network Interfaces

Several interfaces have been proposed in combination with high-performance networks.
The RDMA Protocol Verbs Specification (RDMA Verbs) is an abstract low-level interface
description for RbMA-enabled network cards [HCPR12]. This interface is being used by
many InfiniBand and ROCE vendors. The Distributed Memory Application (DMAPP)
interface was developed for Cray systems to better support programs that use one-sided
read and write communication primitives [tBR10]. The Portals Network Programming
Interface provides triggered communication primitives [BLMRO02]. In contrast to most
other interfaces, the initiator does not specify a remote virtual address that will be ac-
cessed. Instead, the destination is determined by the initiator and the target. This is
done by comparing the message header, set by the initiator, with the contents of list-
like data structures at the destination, controlled by the target node. The result of this
comparison determines the memory location that will be accessed. This flexibility en-
ables the network card to have efficient implementations of both one-sided and two-sided
communication protocols. The latest versions of Portals have been implemented in several
proprietary HPC interconnects. Libfabric defines interfaces with the goal to reduce the gap
between applications and underlying network primitives [GHS™15, Opel8b]. To that end,
the interfaces have been co-designed with application developers and hardware providers,
while being agnostic to the underlying networking protocols and the implementation of
the networking devices. The Message Passing Interface (MP1) is the de-facto standard
interface for writing parallel computations for high-performance computing (HPC) appli-
cations [Mes12]. Since its release in 1994, the interface has been extended to support not

only message passing primitives, but also provides support for one-sided operations.
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Figure 2.1: Data transfer using Remote Direct Memory Access (RDMA).

2.2.2 Remote Direct Memory Access

Remote Direct Memory Access (RDMA) is a mechanism to directly access data in remote
memory regions across an interconnection network. In most implementations, the network
card contains a Direct Memory Access (DMA) engine to read from and write to parts of
main memory. By using this DMA engine, the network card can access memory without
having to interrupt the processor. As a consequence, the operating system is not aware
of the data access happening through the network. Since the processor is not involved
in the transfer, it remains available for processing, which allows the system to interleave
computation and communication (see Figure 2.1). Furthermore, this mechanism makes it
possible to place data directly at specific locations in main memory, thus eliminating the
need for any intermediate buffers. RDMA implements zero-copy messaging, significantly
reduces latency, and enables fast data transfers. However, in many implementations,
buffers need to be registered with the network card before they are accessible over the
interconnect. During the registration process, the memory is pinned such that it cannot
be swapped out, and the necessary address translation information is installed on the card.
These registration operations can occur a significant overhead [FA09, Frel0]. Although
this process is needed for many high-speed networks, it is worth noting that some network
implementations support registration-free memory access [PFHT02, CEH"11]. Sections of

main memory that are accessible over the network are referred to as memory regions.
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RDMA as a hardware mechanism does not specify the semantics of a data transfer. Most
modern networks provide support for one-sided and two-sided memory accesses. Two-sided
operations represent traditional message-passing semantics in which two processes are
actively involved in the communication and need to be synchronized. One-sided operations
on the other hand, represent memory access semantics in which only the source process
is involved in the remote memory access. The processor on the target machine is not
interrupted and is unaware of the memory access happening through the network card. In
order to efficiently use remote one-sided memory operations, multiple programming models
have been developed, the most popular of which are the Remote Memory Access (RMA)

and the Partitioned Global Address Space (PGAS) concepts.

2.2.3 One-Sided Communication Primitives

Remote Memory Access (RMA) is a shared memory programming abstraction. RMA pro-
vides access to remote memory regions through explicit one-sided read and write oper-
ations. These operations move data from one buffer to another, i.e., a read operation
fetches data from a remote machine and transfers it to a local buffer, while the write
operation transmits the data in the opposite direction. Data located on a remote ma-
chine can therefore not be loaded immediately into a register, but needs to be first read
into a local main memory buffer. Using the RMA memory abstractions is similar to pro-
gramming non-cache-coherent machines in which data has to be explicitly loaded into
the cache-coherency domain before it can be used and changes to the data have to be
explicitly flushed back to the source in order for the modifications to be visible on the
remote machine. The processes on the target machine are generally not notified about
the RMA access, although many interfaces offer read and write calls with remote process
notification. Apart from read and write operations, some RMA implementations provide
support for additional functionality, most notably remote atomic operations. Examples of

such atomic operations are remote fetch-and-add and compare-and-swap instructions.

RDMA-capable networks implement the functionality necessary for efficient low-latency,

high-bandwidth one-sided memory accesses. Combining RDMA-enabled hardware with
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RMA communication can be used to drastically reduce the overall costs of large data
transfers. RDMA-capable networks enable zero-copy communication from the network
perspective, while the ability of RMA to place data at specific addresses in remote memory
can eliminate the need for expensive copy operations within the application. However, it
is worth pointing out that RMA programming abstractions can also be used over networks
which do not support RDMA, for example by implementing parts of the required operations

in software [NME10].

RMA has been designed to be a thin and portable layer compatible on top of many lower-
level data movement interfaces. Therefore, RMA has been adopted by many libraries
and interfaces as their one-sided communication and remote memory access abstraction.
In this dissertation, we will have a more detailed look at RDMA Verbs [HCPR12], the
interface used by InfiniBand and ROCE networks, and Mp1-3 [Mes12], the version of MPpI

that introduced support for one-sided communication.

Alternatives to RMA Programming

It is worth noting that RMA is not the only programming model for using one-sided op-
erations. Partitioned Global Address Space (PGAS) is a programming language concept
for writing parallel applications for large distributed memory machines. PGAS assumes
a single global memory address space that is partitioned among all the processes. The
programming model distinguishes between local and remote memory. This can be spec-
ified by the developer through the use of special keywords and annotations. PGAS is
therefore usually found in the form of a programming language extension and is one of
the main concepts behind several languages, such as Co-Array Fortran or Unified Paral-
lel C [CDM™05]. Local variables can only be accessed by local processes, while shared
variables can be written or read over the network. In most PGAs languages, both types
of variables can be accessed in the same way. It is the responsibility of the compiler to
add the necessary code to implement a remote variable access. This means that from a
programming perspective, a remote variable can directly be assigned to a local variable

or a register and does not need to be explicitly loaded into main memory first as is the
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case with RMA. When programming with a PGAS language, the developer needs to be
aware of implicit data movement when accessing shared variable data, and careful non-

uniform memory access (NUMA) optimizations are necessary for applications to achieve

high performance [SWST12, LLST16].

2.2.4 Two-Sided Communication Primitives

When an application wants to use message-based communication, the receiver of a message
first needs to register the designated receive buffer with the network card. Afterwards,
a descriptor element for that buffer is inserted into a receive queue. When sending a
message, in contrast to an RMA write operation, the initiator does not need to specify a
target address when creating a two-sided data transfer request. Rather, the target network
card takes the head element of the appropriate receive queue, verifies that the destination

buffer is of sufficient size, and then transfers the data to that location.

Since the processor is completely bypassed, there is no automatic buffering within the
network stack of the operating system and data is directly written to a user-level buffer by
the DMA engine on the network card. In contrast to traditional socket programming, this
mode of operation assumes that the application is able to manage its own communication
buffers, in particular that it is able to allocate buffers of sufficient size or has advance
knowledge of the sequence of incoming messages. An application that does not posses this
information needs to allocate receive buffers of sufficient size (i.e., maximum possible size
the process can ever receive) and quantity. It also has to monitor the state of the receive

queue carefully in order to make sure that the queue does not get drained completely.

2.2.5 Network Programming with RDMA Verbs and MPI

In this dissertation, we are going to evaluate algorithms that are written against two
communication interfaces: RDMA Verbs, a low-level API used by the InfiniBand [Inf07,
HCPR12] network, and MPp1-3 [Mes12], a high-level communication interface used by many

HpcC applications (see Section 2.1.3).
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Terminology used in the RDMA Verbs Interface

The RpMA Protocol Verbs Specification [HCPR12] describes the interface between ap-
plications and RDMA-enabled network cards. It is the basis of the ibVerbs interface, the
low-level interface of InfiniBand. Before an RDMA operation can take place, the applica-

tion needs to establish connections and create the necessary queues and data structures.

e Device Context: The application can request a list of devices and can start using
the device by opening one or more device-specific context objects. The context is

the root object and all data structures will be created within a certain context.

e Protection Domain: The protection domain (PD) is a simple security mechanism
in order to isolate different objects. Objects can only access and manipulate other

objects within the same protection domain.

e Memory Region: A region of memory that is registered with the network card
and is accessible through RDMA operations is referred to as a memory region (MR).
After the registration, the region is identified by the local network card by its unique
steering key (SKEY). When a remote entity creates an RMA operation targeting this
region, the request needs to include the remote key (RKEY). Furthermore, a region
has a starting address in the virtual address space of the application and a size, like

any regular user-space buffer.

e Queue Pair: The specification proposes queue-based communication between
the application and the network card. Within a certain protection domain, a queue
pair (QP) can be created. As the name suggest, a queue pair contains two types
of queues: an outgoing send queue (SQ) and an incoming receive queue (RQ). The
send queue is used for outgoing send, write, and read operations, while the receive
queue, holds descriptors of the buffers that can be consumed by inbound messages.
Two queue pairs can be linked together such that the queue pair functions as the

connection abstraction between two endpoints.

e Work Request: The content of the send and receive queues are descriptors that

are referred to as work requests (WR). For outgoing operations, a work request

25



Chapter 2. Background

posted to the send queue describes the operation that needs to be executed as well
as the buffers to operate on. For incoming messages, the work requests within the

receive queue contain information about the buffers that can be used to receive data.

Completion Queue: Special types of queues are used to notify the application
about the completion of work requests. Once a request completed, the network card
usually generates a corresponding work completion (W) element and inserts it into
the correct completion queue (WQ). Each of the two queues within a queue pair has

a completion queue, that can also be shared.

Shared Receive Queue: By default a queue pair has a dedicated send and receive
queue. For incoming operations, some applications do not want to check each queue
pair individually but rather have one common receive queue for all connections, i.e. a
shared receive queue (SRQ). As the name suggest, this type of receive queue can be

used by multiple queue pairs.

More details on the Verbs interface in terms of connection management, buffer registration,

and the remote memory operations can be found in Appendix A.

Terminology used in the Message Passing Interface

MpPpr is a widely used interface in HPC applications. It provides similar functionality to the

one present in RDMA Verbs interface. However, in addition to data transfer mechanisms,

it also offers a rich high-level interface for many common communication patterns, such

as data shuffling and reduce operations.
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e MPI Process: The fundamental unit of parallelism within an MPI application

is the MPI process. Many implementations map MPI processes to system-level pro-
cesses. It is the responsibility of the library to always chose the most appropriate
communication mechanism based on the relative distance of the processes, e.g. shared

memory within a single node and RMA operations for processes on different machines.
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With this model, the processes remain — to a large extent — unaware of the distribu-

tion, which is a key element when building large-scale distributed applications.

Communication Group: Some operations, such as reduce operations, require
the involvement of multiple or all processes. MPI_COMM_WORLD is the default commu-
nication group to which every process belongs. As applications start to get more
complex, it becomes less feasible to always involve all processes. To that end, the
application developer can create arbitrary groups of processes, often called commu-

nication groups or communicators.

Rank: Within a communication group, each process is identified by a unique
number, i.e. the rank of a process within the group. MPI provides mechanisms to
translate between the different ranks a process can have in different communication
groups. System-wide, each process can be uniquely identified by the rank it has in

the MPI_COMM_WORLD group.

Collective Operation: An operation that requires the involvement of multiple
processes is called a collective operation. A collective call operates on a communi-
cation group and every process has to participate in the operation, even if it has
nothing to contribute directly. Some collective calls are blocking and represent an
implicit point of synchronization within the execution of the program. Examples
of collective operations are reduce operations, but also many memory management

operations, such as window allocation, are implemented as collective primitives.

More details on the MPI interface in terms of connection management, buffer registration,

and the remote memory operations can be found in Appendix B.

2.3 Database Systems and Data Processing

In this section, we provide an overview of relational database systems, their workloads,

and related data processing frameworks. Furthermore, we highlight recent trends in non-

relational database systems, such as key-value stores and graph database systems.
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2.3.1 Traditional Relational Database Systems

A relational database management system (RDBMS) is a system for storing, organizing,
and querying data. In the relational model, a data entry is represented as tuple. Tuples
are grouped into relations. The relational model was first described by Edgar F. Codd
in 1969. The interface used to communicate with most relational database systems is
the Structured Query Language (SQL). SQL provides methods to define a schema of the
data (domain definition language), insert, update, and delete data (data manipulation
language), and query said data (query language). The RDBMS has a cost-based optimizer
that, given a SQL statement (e.g., a query), can determine the optimal way to execute
the query. For example, if data from two tables needs to be combined, i.e., joined, the
optimizer determines the most efficient join order and decides which algorithms to use.
Because the schema is well-defined, a relational database system can not only optimize the
incoming queries but also the storage layout. The logical view of the data, i.e., relations
and tuples, is decoupled from the way data is physically stored. This flexibility allows

system designers to optimize the RDBMS for specific workloads.

Processing large amounts of insert, update, and delete operations is referred to as on-
line transaction processing (OLTP), while processing vast amounts of queries is called
online analytical processing (OLAP). Hybrid workloads containing both a large number
of transactions and queries are called mixed workloads. Closely coupling transactions
and analysis is referred to as hybrid transactional-analytical processing (HTAP). As of to
date, most database systems are either optimized for OLTP or for OLAP. This is often
reflected in the storage layout. OLTP transactions manipulate individual records. In order
to benefit from locality, attributes belonging to the same record should be stored con-
secutively. This storage layout is called a row store. In contrast, OLAP workloads often
require aggregations on columns. In order to benefit from Single-Instruction-Multiple-
Data (SIMD) vector instructions offered by modern processors, it is beneficial to store
data in the form of columns, i.e., in column store format. Specialized in-memory database
engines and system extensions using one or multiple of these data layouts have been devel-

oped [GKPT10, DFI*T13, LCC™15] Recently, there has been a growing focus on building
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new architectures that reduce workload interference and are able to provide and maintain

good performance for hybrid and mixed workloads [MGBA17, Mak17, LMK"17].

In order to compare the performance of database systems, several benchmarks have been
developed, each testing different elements of the system. Some widely-used benchmark
suites are created by the Transaction Processing Performance Council (TPc). The TpcC-
C [Tral0] benchmark simulates a complete order-entry environment in which users execute
transactions (e.g., new order entry, warehouse management, shipment tracking) against
the database, while the Tpc-H [Tral7] and TpPc-DS [Tral8a] benchmarks mostly consist

of a suite of business-oriented ad-hoc queries that test the query execution engine.

A relational database system will provide the application with guarantees when it comes
to the atomicity, consistency, isolation, and durability (AcCID) of transactions. The same
is true for queries that execute while concurrent data modifications are taking place. A
database system can offer many different levels of transaction isolation guarantees and, if
desired by the user, can relax some assumptions in order to achieve higher performance.
Nevertheless, providing the highest levels of transaction isolation usually requires signif-
icant amounts of communication and coordination, especially when the execution of a

query or transaction involves multiple machines.

Given the increase of data volume and the resulting need to scale beyond a single ma-
chine, a platform of choice for data management are rack-scale clusters composed of several
multi-core machines connected by a high-throughput, low-latency network. The adoption
of rack-scale architectures has been further accelerated through the recent introduction
of several commercial database appliances. Despite the use of high-performance intercon-
nects, there has been little work on how to fundamentally re-architect database systems
and algorithms for these types of networks. Recent efforts use remote memory to expand
the main-memory storage capacity of a single machine [LDSN16]. SAP HANA [FML"12]
is a widely-used database system that requires cache-coherent shared memory to operate.
Their rack-scale solution involves the use of SGI computers. Unique to SGI is that the
cluster nodes can be configured to provide the illusion of a single machine with shared

memory of several terabytes. High-performance networks are used to efficiently run the
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cache-coherency protocol. Oracle Exadata [Oral2] is a commercial, rack-scale solution
that uses InfiniBand to connect compute and storage servers. It integrates hardware and
software optimized for running the Oracle Database. Oracle RAPID [BKG'18] is a re-
search project targeting large-scale data management and analysis. RAPID is designed
from the ground up with hardware-software co-design in mind. Its goal is to provide high
performance while consuming less power in comparison to the modern database appli-
ances. Its processing engines have been designed around a new custom processor called
the Data Processing Unit (DPU) and a novel Data Movement System (DMS) that in part

relies on high-performance networks.

2.3.2 Non-Relational Database Systems

In order to allow systems to dynamically scale to a large number of machines (e.g., in elastic
cloud environments), provide high-availability, support new types of workloads, and keep
the design complexity of the system at a minimum, many data management systems have
been created that do not use the relational model. As an alternative, data is stored in
the form of key-value pairs, wide columns, complex documents, multi-dimensional cubes,

graphs, or other application-specific data structures.

Key-value stores use the associative array as their fundamental data model. The array is
often referred to as a map or dictionary. Some key-value stores have been optimized to run
on high-performance networks and use RDMA to accelerate the communication [JSLT11,
DNCHI14, KKA14]. A wide column store is a two-dimensional key-value store. Wide
column stores must not be confused with the column-oriented storage layout described in
the previous section. Document-oriented database systems are designed to work with semi-
structured data. Documents encapsulate and encode information in a standard format or
encoding, such as XML or JSON. Document databases usually do not enforce that a
specific schema is maintained. Graph database engines focus on the rapid traversal of
the relationships (i.e., the edges) between objects (i.e., the vertexes). A triple store is a
special kind of graph database optimized to process subject-predicate-object triples. All

these systems are commonly referred to as Not-only-SQL (NOSQL) database systems.
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NoSQL systems often give up strong consistency guarantees in favor of scalability and
elasticity. They offer a concept of eventual consistency in which changes are propagated
to all compute nodes only at a later point in time, allowing for some period during which
queries do not operate on a consistent view of the data. These systems converge to a stable
and consistent state in the future, which is different from the strict ACID guarantees of a

traditional RDBMS that do not allow any intermediate inconsistent state to be visible.

RocksDB [Facl8] is a high-performance, embedded database system for key-value data.
It is used as a storage engine in multiple data management services at various web-scale
enterprises. FaRM [DNCH14, DNN*15] and Herd [KKA14] are experimental key-value
store systems that use RDMA to speed up access to the data on high-speed interconnects.
Google BigTable [CDGT06], Apache HBase [Apal8d], and Apache Cassandra [Apal8a]
are examples of wide column store implementations focusing on performance, scalability,
elasticity, and fault-tolerance. Apache CouchDB [Apal8b] and MongoDB [Monl8] store
collections of independent documents. These systems provide support for meta-data and
indexing structures for managing and retrieving stored documents. They also ensure
limited transactional guarantees within the scope of a single document. Neo4j [Neol§]
is a native graph database. A core concept in Neod4j is index-free adjacency by which
neighbors of a vertex can directly be referenced without the need for an index lookup.
Other graph engines such as Microsoft Trinity [SWL13] are based on a distributed key-
value store system. Cray offers the Cray Graph Engine [RHMMI18], a triple-based graph

processing system that can be used on supercomputers.

2.3.3 Modern Data Processing Frameworks

MapReduce [DG04] is a programming model for analyzing large sets of data. It is designed
with massive parallelism in mind. The processing can be divided into three stages. In the
Map-phase, each worker is assigned to a particular section of the data to which it applies
the map function that transforms the input and generates intermediate data. This output
it redistributed in the Shuffle-phase. Finally, in the third stage, the intermediate output of
the first phase is grouped together by the reduce function to produce the final result. For
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processing sets of data that can be partitioned, MapReduce frameworks and implementa-
tions make it possible to run at very large scale and process vasts amount of input data.
The most popular open-source implementation is Apache Hadoop [Apal8e|. Optimization
strategies targeting RDMA-capable networks have been proposed to accelerate MapReduce

implementations [WIL™13].

Dryad [IBY 07, YIFT08] is an infrastructure platform allowing the programmer to write
several sequential programs and connect these programs using one-way channels, thus
structuring the computation as a directed graph. Naiad [MMI"13] is the successor of
Dryad. It is a distributed system for executing parallel and cyclic dataflow programs.
The computational model that is the core of these systems is the dataflow model. Stateful
vertices — representing parts of the computation — send and receive messages with a logical
time-stamp along directed edges. These time-stamped messages are used by the system to
track the progress and schedule parts of the computation. Timely is also the name of an
open-source implementation of this model that is currently being extended to make use of

advanced network features such as RDMA.

Performing computations over streams of data and reacting to specific events with low la-
tency has become increasingly important for many business-critical applications. Several
systems and data processing frameworks have been proposed to perform these types of
computation, some of which operate on batches of data while others — from the perspec-
tive of the programmer — process each record individually. Apache Spark [Apal8f] is an
example of a cluster-computing framework that can be used for micro-batch processing,
while Apache Flink [Apal8c| is a record-at-a-time, high-throughput, low-latency stream
processing engine that can execute dataflow programs on streams. These systems have
also been tested and evaluated on RDMA-enabled network technologies [LWI* 14, LCX16].
Other projects are a combination of a stream processing framework and a database sys-
tem. By using a shared-scan approach and a delta-main data-structure Analytics-in-
Motion (AmM) [BEGT15] proposes a system that can store and run analytics on data

coming from streaming systems.
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2.3.4 Modern Distributed Relational Database Systems

Modern relational database systems seek to provide the same performance as NOSQL sys-
tems when it comes to OLTP workloads and the same scalability as modern data processing
frameworks when it comes to OLAP queries. At the same time, these systems maintain the
same ACID guarantees as traditional database systems. Database systems designed from
the ground up to achieve these goals are called NEWSQL systems. Although the internal
architecture of NEWSQL systems varies significantly from one system to the next, all of
them are primarily based on the relational model. Many systems target specific workloads

and can therefore incorporate workload-specific optimizations.

H-Store [KKNT08] is an example of a database system that was developed as a parallel,
row-storage RDBMS that is designed to operate in a distributed cluster of shared-nothing
nodes. The data is partitioned into disjoint subsets. FEach subset is assigned to a single-
threaded execution engine. Because of this design, transactions touching a specific tuple
are serialized by the execution engine. VoltDB [SW13] follows a similar concept. It is
a scale-out database that relies on horizontal partitioning down to the individual hard-
ware context (i.e., processor thread). Data is partitioned and managed on a per-core
level. It uses a combination of snapshots and command logging to ensure durability.
Calvin [TDWT12] is a partitioned database system optimized for OLTP workloads. In
order to achieve high scalability, Calvin uses a transaction scheduling mechanism that
provides deterministic ordering guarantees and reduces contention costs associated with
distributed transactions. Google Spanner [CDET12] is a large-scale distributed database
system that focuses on geographic distribution. The system not only uses a lock-based
concurrency control mechanism, but also relies on the Global Positioning System (GPS)

and atomic clocks to serialize transactions at a global scale.

ScyPer [MRR"13] extends the HyPer [KN11] database to provide scalable analytics on
remote replicas by propagating updates either using a logical or physical redo log. The
systems has also been extended to run on high-performance networks [RMKN15, R6d16].
BatchDB [MGBA17, Mak17] is an in-memory database engine designed for hybrid OLTP

and OLAP workloads. It achieves good performance, provides a high level of data fresh-
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ness, and minimizes workload interaction by using specialized replicas. Each replica is
optimized for a specific workload. A high-performance update propagation mechanism
and scheduling system ensures that queries get routed to the appropriated replica and can
operate on the latest version of the data. The MemSQL [Shal4] database is a distributed
database system that uses a two-level hierarchy composed of leaf and aggregation nodes.
An aggregator is responsible for distributing the queries across leaf nodes and aggregating
results. MemSQL places great emphasis on using lock-free data structures to support
parallel and concurrent execution of queries and transactions. Other systems like NAM-
DB [BCGT16, SBK™17] and Tell [LPEK15, PBB*17] propose new architectures that target
RDMA-capable, high-throughput, low-latency interconnects. These new designs have been

evaluated on modern InfiniBand networks and exhibit good performance and scalability.

2.3.5 Concurrency Control in Relational Database Systems

There are several concurrency control mechanisms that are being used in database systems,
e.g., Two-Phase Locking (2PL), optimistic concurrency control (Occ), multi-version con-
currency control (Mvcc), and timestamp ordering (TsS). These mechanisms have been
evaluated and compared against each other in recent publications [YBP*14, HAPS17].
Furthermore, there has been a significant focus on building reliable, fair, starvation-free
locking mechanisms for HPC systems as well as cloud environments [Bur0O6]. The design
of these systems focuses on achieving a high throughput for a small number of highly-
contented locks and often expects coarse-grained locks to be taken. Many recent RMA
locking mechanisms offer support for reader/writer (shared/exculusive) locks, but are dif-
ficult to extend to more sophisticated locking schemes (e.g., intention locks) given the

current network technology [SBH16, YCMI8].

A traditional lock table of a database system offers a large number of locks, most of which
are not contended. Typically, a relational database system does not make assumptions
about the granularity of the locks. Therefore, it offers several lock modes, including inten-
tion locks. The dominant locking method used in database management systems is multi-

level granularity locking [BHG87, GR92]. It solves the problem that different transactions
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Table 2.1: Multi-level granularity locking.

(a) Request mode compatibility matrix. (b) Lock mode computation.
NL Is IX S SIX X Granted Modes Lock Mode
NL Vv v v v v v {NL} NL
IS v v v v v {IS, {IS}} IS
IX v v v {IX, {IX} {IS}} IX
S v v v {S, {S} {IS}} S
SIX VvV v {SIX, {IS}} SIX
X v {X} X

need to lock and modify resources with a different granularity, e.g., one transaction might
only be interested in modifying a single record, while others need to access and modify en-
tire tables or ranges. If locks are too coarse-grained, concurrent processing of transactions
targeting different tuples might not be possible, resulting in reduced throughput. On the
other hand, fine-grained locks add a significant overhead when processing a transaction
that is forced to acquire many locks. Multi-level granularity locking makes use of the
hierarchical structure of the data in a database, e.g., a schema contains tables, which in

turn contain ranges of tuples. Locks can be acquired at any level in the hierarchy.

Before a lock can be acquired on a certain object, all its parent elements (i.e., the elements
that contain the object) need to be locked as well. To that end, the locking scheme does
not only provide shared (S) and exclusive (X) locks, but also intention locks. The intention
shared (IS) and intention exclusive (IX) locks are used to signal that the transaction intents
to lock elements further down in the hierarchy in either shared respectively exclusive mode.
The shared and intention exclusive mode (SIX) is a combination of the S and IX modes,
locking an element in shared mode while stating that one or more child elements will be
locked in exclusive mode. Finally, the no lock (NL) mode is used to indicate that the
lock is not taken. The overall mode of the lock is dependent on the types of locks that

have been granted and have not yet been released. The compatibility matrix for each
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combination of lock modes as well as the resulting lock mode are shown in Tables 2.1a

and Table 2.1b respectively.

In order to guarantee serializability, many database systems use strict Two-Phase Lock-
ing (2pPL). In addition, in a distributed system, the Two-Phase Commit (2PC) protocol
ensures that data modified by a transaction on different nodes is in a consistent state

before the transaction is allowed to commit.
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Recent advances in processor architecture caused by multi-socket and multi-core systems
have triggered a re-design and re-evaluation of database algorithms, in particular join pro-
cessing [KSCT09, BLP11, BTAO13, BATO13, Ball4, BTA015]. The ability to efficiently
process complex queries over large sets of data is a fundamental requirement for database
systems and data processing frameworks. Joins appear frequently in query workloads and
are commonly accepted to be compute- and communication-intensive. Therefore, they usu-
ally dominate the query execution costs in OLAP workloads. As a result, the relational join
operator is considered one of the most important database operators. Some join implemen-
tations are carefully tuned to the underlying hardware in order to provide the best perfor-
mance possible, i.e., hardware-conscious algorithms [AKN12, BTAO13, BATO13, Ball4],
while other approaches argue that modern hardware is good enough at hiding most cache
and TLB misses such that careful tailoring of the algorithm to fit the hardware is no longer
needed, i.e., hardware-oblivious algorithms [KSCT09, BLP11]. In addition, there are two
major algorithmic approaches for implementing joins, namely hash-based and sort-based
algorithms. The former approach creates and probes hash tables, while the latter relies

on sorting both input relations.
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Given the increase in data volume, rack-scale clusters composed of several multi-core
machines connected by a high-throughput, low-latency network have become increasingly
popular for data management and analysis. Processing vasts amounts of relational data
involves complex, large join operations. Thus, these systems would benefit from having
efficient distributed join algorithms that are aware of machine boundaries and employ
communication mechanisms suited for the underlying network technology. In this chapter,
we investigate hardware-conscious hash and sort-merge join algorithms that are optimized
to run on RDMA-capable interconnects. We explain the necessary modifications to both
algorithms in order to run on a rack-scale cluster, evaluate and compare both approaches
on two generations of InfiniBand networks, and propose detailed performance models for

each of the two join algorithms.

3.1 Problem Statement and Novelty

Several low-latency networks provide Remote Direct Memory Access (RDMA) as a light-
weight communication mechanism to transfer data. RDMA is essential for high-performance
applications because the data is immediately written or read by the network card, thus
eliminating the need to copy the data across intermediate buffers inside the operating
system (see Section 2.2.2). This in turns reduces the overall costs of large data trans-
fers. However, these performance advantages can only be leveraged through thought-
ful management of the RDMA-enabled buffers, the correct and careful use of one-sided

RMA operations, and the ability of the algorithm to interleave processing and communi-

cation [FA09, Frel0, BLAK15, Rod16, BCGT16, BAH17, BMS*17, LYB17].

In this chapter, we design, model, and evaluate novel join algorithms optimized for this
new generation of networks. Building upon recent work on main-memory multi-core join
algorithms [BTAO13, BATO13, BTAO15], this dissertation is one of the first to analyze
how join algorithms need to be adapted in order to run on a modern rack-scale database
cluster. In the description of the algorithm we place special emphasis on the registration,

de-registration, and management of RDMA-enabled buffers as these are critical compo-
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nents in the data exchange phase. To generalize our findings, we develop a novel theoret-
ical model allowing us to predict the performance of the algorithms based on the system
configuration and input data size. Last but not least, we evaluate our prototype imple-
mentation on two database clusters. The experimental results validate the accuracy of the
analytical model and provide new insights on the importance of interleaving computation
and communication, the role of the network bandwidth, the effects of skew, and the impact

of different relation sizes.

3.2 Distributed Join Algorithms using RDMA

In this section, we explain implementation details of the radix hash and sort-merge join
algorithms. The focus is on the implementation of the network-centric phases of both join

algorithms, namely the network-partitioning and the network-sorting phases, respectively.

3.2.1 Radix Hash Join Algorithm

The radix hash join is a hardware-conscious, main-memory hash join algorithm that oper-
ates in two stages. First, both input relations R and S are divided into disjoint partitions
according to the join attributes. The goal of the partitioning stage is to ensure that the
resulting partitions fit into the private cache of each processor core. Next, a hash ta-
ble is built over each partition of the inner relation and is probed using the data of the
corresponding partition of the outer relation. Producing partitions and hash tables that
fit into the cache has a major impact on performance compared to accessing large hash
tables, which would result in a higher cache miss rate [MBKO02|. Figure 3.1 illustrates
the execution of the radix hash join on two machines. In this example, data is first di-
vided into four partitions. Once the data has been exchanged, a second partitioning pass
further subdivides the data. In the illustration, the fan-out of the partitioning passes is
set to four. Given the number of cache lines and the number of TLB entries, modern
processors support a larger fan-out of 512 to 2048 partitions without any significant loss

in performance [BTAO13, Ball4, BTAO15].
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Figure 3.1: Execution of the radix hash join on two machines.

Histogram Computation

As a first step in the algorithm, all threads compute a histogram over the input data. By
assigning the threads to non-overlapping sections of the input relations of equal size, we
can ensure an even load distribution among the worker threads. The histogram contains
information about the number of tuples in each partition that is about to be created. All
the threads within the same machine exchange their histograms and combine them into
one machine-level histogram providing an overview of the data residing on a particular ma-
chine. Computing the machine-level histograms is identical to the histogram computation

of the join algorithm described by Balkesen at al. [BTAO13].

The machine-level histograms are then exchanged over the network. They can either be
sent to a predesignated coordinator or distributed among all the nodes. The machine-level
histograms are in turn combined into a global histogram providing a global overview of

the partition sizes and the necessary size of the buffers which need to be allocated to store
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Figure 3.2: Buffer management for outgoing, partitioned data.

the data received over the network. From the machine-level and global histograms the join
algorithm computes a machine-partition assignment for every node in the cluster. This
assignment can be dynamic or static. The algorithm computing the machine-partition
assignment is independent of the rest of the join algorithm and several approaches have

been proposed to distribute the data, for example, taking data skew into account [RIKN16].

Partitioning Phase

The purpose of the partitioning phase of the radix hash join is to ensure that the partitions
and hash tables fit into the processor cache. For the distributed radix join, we additionally
want to ensure maximum resource utilization. In particular, we need to be able to assign
at least one partition to each processor core. Therefore, the number of partitions needs
to be at least equal to the total number of cores in order to prevent cores from becoming
idle. In the multi-pass partitioning phase of the algorithm we distinguish between two
different types of partitioning passes: (i) a network-partitioning pass that interleaves the
computation of the partitions with the network transfer, and (ii) local partitioning passes
that partition the data locally in order to ensure that the partitions fit into the processor

cache. The latter does not involve any network transfer.
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Figure 3.3: Buffer management for incoming, partitioned data.

To efficiently use the asynchronous nature of RDMA, the data needs be transmitted over
the network in parallel with the computation. When designing the algorithm, we need
to avoid having a separate network transmission phase during which the processor cores
are idle. To achieve these goals, we introduce the concept of a network-partitioning pass
in which the data is partitioned and distributed in parallel. Crucial for high performance
processing is the management of the partitioning buffers, in particular the ability to reuse
existing RDMA-enabled buffers [FA09]. For each partition which will be processed locally, a
thread receives a local buffer for writing the output. Based on the histogram computation,
the required size of the local buffers can be determined such that local buffers do not
overflow. Remote partitions need to be transmitted over the network. For processing
remote partitions, a thread receives multiple fixed-sized RDMA-enabled buffers. Data
belonging to a remote partition is partitioned directly into these buffers. When a remote

buffer is full, it will be transmitted over the network to the target machine.

In order to continue processing while a network operation is taking place, at least two
RpDMA-enabled buffers are assigned to each thread for a given partition. The buffers
assigned to one partition can be used in turn and reused once the preceding network
operation completed. Figure 3.2 shows the assignment of buffers to threads and partitions.
To hide the buffer registration costs, the RbDMA-enabled buffers are drawn from a pool
containing pre-allocated and pre-registered memory. All buffers, both local and RbMA-
enabled buffers, are private to each thread, such that no synchronization is required while

partitioning the input relations.

On the target machine, the incoming data needs to be written to the correct address within
main memory. In order to use one-sided operation and avoid any intermediate data copies,
the buffer used for receiving data is structured as follows: Based on the global histogram,

the size of each partition is known. The partitions that have been assigned to a particular
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node are stored consecutive in memory. Within a partition, machine-level histograms
provide the necessary information to determine exclusive locations where the individual
processes can write their part of the data. This is done by computing a prefix-sum over
all machine-level histograms. Figure 3.3 shows that the resulting data layout ensures that

tuples belonging to the same partition are written consecutive in main memory.

The goal of the partitioning phase is to speed up the build-probe phase by creating cache-
sized partitions. To ensure that the resulting partitions fit into the private processor
caches, subsequent partitioning passes not involving network operations might be required

depending on the input data size.

Build and Probe Phase

In the build-probe phase, a hash table is built over the data of each partition of the inner
relation. Data from the corresponding partition of the outer relation is used to probe the
hash table. Because there is no data dependency between two partitions, this phase can
be processed in parallel. The result containing the matching tuples can either be output
to a local buffer or written to RDMA-enabled buffers, depending on the location where the
result will be processed further. Similar to the partitioning phase, we transmit a RDMA-
enabled buffer over the network once it is full. To be able to continue processing, each
thread receives multiple output buffers for transmitting data. The buffers can be reused

once the proceeding network operation completed.

When operating on a skewed data set, the computation of the build-probe phase of a
partition can be shared among multiple threads. If the partition of the outer relation
contains more tuples than a predefined threshold, it is split into distinct ranges. Multiple
threads can then be used to probe the hash table, each operating on its range of the outer
relation. No synchronization between the threads is needed as the accesses to the common
hash table are read-only. Skew on the inner relation can cause that the hash tables do not
fit into the processor cache. This can be compensated by splitting the large hash table
into a set of smaller hash tables. In this case, the tuples of the outer relation need to be

used to probe multiple tables, however, this probing can also be executed in parallel.
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Figure 3.4: Execution of the sort-merge join on two machines.

3.2.2 Sort-Merge Join Algorithm

The sort-merge join presented in this section uses modern hardware features such as large
SIMD vectorization units to speed up the sorting operation [BATOlB]. It is composed
out of two main steps. First, the input is being sorted using merge-sort. While data is
being sorted, it is also redistributed among the nodes through an interleaved sorting and
exchange strategy. After both input relations R and S have been sorted, they are scanned
sequentially to find matching tuples. This part of the algorithm is commonly referred
to as the merge phase and should not be confused with the merge operations that are
performed as part of the sorting phase. To avoid confusion, we will refer to the last phase
as the matching phase. Figure 3.4 illustrates the execution of the sort-merge algorithm
with two machines. Data is first partitioned among the nodes and small sorted runs are
created during the exchange phase. These runs are merged using a multi-way merge tree

to produce a sorted output that can be easily scanned to find matching tuples.
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Figure 3.5: Buffer management for outgoing, sorted data.

Sorting Phase

As a first step in the distributed sorting algorithm, each thread partitions the input data.
We use range-partitioning to ensure that matching elements in both relations will be
assigned to the same machine for processing. Because we use a continuous key space, we
can split the input relations into ranges of identical size. For relations where this is not the
case, the algorithms would need to be augmented with a splitter-based approach to find
the optimal splitter values to sub-divide the relation [FM70, HY83, DNS91, KK93, SK10].

To prevent cores from becoming idle, we create as many partitions as there are cores.

Afterwards, each thread creates runs of fixed size, which are sorted locally. For sort-
ing, we use an in-cache sorting algorithm with vector instructions based on sorting net-
works [BATO13, Bal14]. The sorted output is written into an RbDMA-enabled buffer. When
a run has been sorted, it is immediately transmitted asynchronously to the target machine.
While the network transfer is taking place, the process can continue sorting the next run
of input data, thus interleaving processing and communication. Figure 3.5 illustrates this
process with two threads partitioning and sorting the input data. To avoid contention on
the receiving node, not every process starts sorting the first partition. Instead, process ¢
starts processing partition i+ 1. Individual runs are appended one after the other. Because
the amount of data in a partition is not necessarily a multiple of the run size, the last run

might contain fewer elements.

On the target machine, each remote process has an exclusive range into which the process
can write data (see Figure 3.6). These ranges are sized according to the information

contained in a histogram generated during the partitioning phase. Next, the algorithm

45



Chapter 3. Rack-Scale Join Processing
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Figure 3.6: Buffer management for incoming, sorted data.

merges the sorted runs into one single relation. Multiple runs are merged simultaneously
using an in-cache merge tree. The merge process is accelerated through the use of large
SIMD vector instructions. To balance computation and memory bandwidth requirements
within the nodes, multi-way merging is used to reduce the amount of round-trips to and

from main memory [BATO13, Ball4].

Matching Phase

After the data has been sorted, the relations are partitioned into p ranges — where p is
the number of processor cores — and all elements within a range have been sorted. The
partitioning step of the sorting phase ensures that matching elements from both relations
have been assigned to the same process. At this stage, every thread can start joining
its part of the data. No further communication or synchronization between processes is
necessary. Scanning both relations is a linear-time operation, and modern hardware is
optimized for very fast sequential accesses, making the matching phase highly efficient.
Two head pointers keeps track of the current position in their respective relation. The join

condition is evaluated on the head elements and, if it holds, an output tuple is generated.

3.3 Performance Models

In Section 2.1.1, we explained the importance of performance models in order to under-
stand the behavior of an HpC application. In this section, we provide analytical models
of the proposed algorithms that will be compared against the results of the experimental
evaluation. The goal of these models is to provide a lower bound for the execution of the

join algorithms and be able to judge the efficiency of our implementations with respect to
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this bound. Furthermore, having a performance model is useful to predict the influence

future hardware (e.g., faster networks) will have on the execution time of the algorithms.

3.3.1 Radix Hash Join Algorithm

The distributed radix hash join starts by computing a global histogram in order to de-
termine the size of the communication buffers and memory windows. The time required
to compute the histograms Thistogram depends on the size of both input relations (R and
S) and the rate Py, at which each thread can scan over the data. The total number of
threads in the system depends on the number of machines Ny achines and the number of

threads per machine Niyreads/machine-

Bl + 151

N, machines * N threads/machine * P, scan

(3.1)

Thistogram =

The partitioning speed of the network-partitioning pass is composed of two parts: (i) the
speed at which tuples are written locally to the respective buffers P,atition, and (ii) the
speed at which tuples belonging to remote partitions can be transmitted over the network
to a remote machine P,ework- The network bandwidth bw is shared equally among all the

threads running on the same machine.

bw

Pnetwork = (32)
Nthreads/machine

Assuming uniform distribution of the data over all machines in the system (i.e., Nyachines)s

we can estimate that (|R|4|S])- Nmaihines tuples belong to local partitions. The rest is send
to remote machines. At this point, the system can either be limited by the partitioning
speed of the threads (compute-bound) or by the available network bandwidth on each
host (network-bound). A system is network-bound if the tuples belonging to remote

partitions are output at a faster rate than the network is able to transmit.

Nmachines -1
Rt Ppartition > Pnetwork (33)
Nmachines
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In systems that are compute-bound, the overall processing rate is fully determined by the
partitioning speed of each thread Ppatition- The entire system is composed of Npyachines

machines, each of which contains Nihreads/machine Processor cores.

Ppartition,network - Nmachines : Nthreads/machine . Ppartition (34)

On the other hand, if the system is network-bound, meaning the partitioning speed exceeds
the maximum network processing speed, threads have to wait for network operations to
complete before they are able to reuse RbMA-enabled buffers. The observed partitioning

speed of each thread is a combination of Ppartition and Pretwork-

b 1
partltlon,net,bound - 1/Nmachines + (Nmachines_l)/Nmachines

Ppartition Pnetwork

(3.5)
N, machines ° P, partition * P, network
(Nmachines - 1) : Ppartition + pnetwork

From the above, we can determine the partitioning rate of the network pass in systems

that are limited by the performance of the network.

Ppartition,network = Nmachines ' Nthreads/machine ' Ppartition,net,bound (36)

Local partitioning passes do not involve any network transfer and all threads in the system
partition the data at their maximum partitioning rate. Therefore, the global processing

speed of this phase increases with the total number of available processor cores.

Ppartition,local - Nmachines : Nthreads/machine : Ppartition (37)

The partitioning phase is composed of d passes, one of them involving the transfer of the
data over the network, the other d — 1 passes operate on local data only and do not involve

the network. The partitioning passes operate at a rate of P artitionnetwork a1d Ppartition_locals
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respectively. Therefore, we can derive an expression for the total time required to partition

both input relations of size |R| and |S].

1 d—1
Tpartition = ( + ) ’ (‘R| + |SD (38)

P, partition_network P, partition_local

In the build phase, a hash table is created for each partition R; of the inner relation.
Because the hash table fits into the processor cache, the build operation can be performed
at a high rate P,,q. The number of generated partitions depends on the partitioning
fan-out of each pass Nenowt and the number of partitioning passes d. Creating the hash

tables requires one pass over every element of the inner relation R.

| R

d
Tiuita = (Nfancout)” -
Nmachines : Nthreads/machine : Pbuild

_ B

Nmachines : Nthreads/machine : Pbuild

Data from the corresponding partition S; of the outer relation is used to probe the hash

table. Probing the in-cache hash tables requires a single pass over the outer relation S.

S|

N, machines N, threads/machine * P, probe

Tprobe - (Nfan—out)d '

(3.10)
_ 5]

N, machines N, threads/machine * P, probe

Equation 3.10 does not include the time required to materialize the output of the join.
The cost of fetching additional payload data over the network depends on the selectivity
of the join and the size of the payload fields.

The hash join executes the histogram computation, partition, build, and probe phases

sequentially. Assuming no interference between the phases and an ideal synchronization

49



Chapter 3. Rack-Scale Join Processing

of all threads, we can determine a lower bound for the execution time of the radix hash

join algorithm Tiy;.
Trhj = Thistogram + Tpartition + Tbuild + Tprobe (311)

3.3.2 Sort-Merge Join Algorithm

Both algorithms share a lot of commonalities. For example, the sort-merge join starts by
creating histograms and by range-partitioning the data, similar to the radix hash join.
Therefore, the time required to compute the histograms of the sort-merge join Thistogram is
identical to the one described by Equation 3.1. The partitioning phase does not involve the
network and is purely local. Therefore, its time can be determined through Equation 3.7,
keeping in mind that the exact value of the partitioning rate between both algorithms is
subject to change due to the different partitioning fan-out and function used to compute

the assignment of tuples to partitions.

Once the data has been partitioned, individual runs of fixed size [ are created. The total

number of runs depends on the size of the two relations and the size of each run [.

Ng = |ZR’ and Ng= ‘lS’ (3.12)

A run is sorted and then transmitted asynchronously to the target node. While the
network transfer is taking place, the process can continue sorting the next run of input
data, thus interleaving processing and communication. The performance of the algorithm
can either be limited by the rate Py un at which a run can be sorted (compute-bound) or
by the available network bandwidth bw shared by all Niyreads/machine threads on the same

machine (network-bound).

For CpU-bound systems, the total rate at which all Ng + Ng runs can be sorted and

transmitted is equal to the local sorting rate Pio¢,un. This sorting rate is dependent on
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the length [ of the sorted runs, the number of threads per machine, and the total number

of machines in the system.

Psort = Nmachines * Nthreads/machine ’ Psort,run(l) (313)

For systems that are network-bound, the sorting rate is a combination of the local sorting
rate P run and the rate at which sorted runs can be transmitted over the network P, etwork-

In this case, Pyetwork 1S identical to the one described by Equation 3.2. Assuming uniform

distribution, (|R| + |S|) - ~—=— tuples remain local.

Nmachines

1

P =
sort_net_bound 1/]Vmachines (Nmachines _ 1)/Nmachines
Psort,run(l) Pnetwork

(3.14)

Nmachines : Psortlun(l) : Pnetwork
(Nmachines - 1) : Psort,run(l) + Pnetwork

Therefore, we can determine the rate at which the threads can sort and transmit all runs

in a network-bound system.

Psort = Nmachines ' Nthreads/machine ' Psort,net,bound (315)

The total time required to sort the input tuples into small sorted runs depends primarily

on the input size.

L |RI+1S]
Psort B Psort

Tsort = (NR + NS) : (316)

After a thread has sorted its input data, it waits until it has received all the sorted runs of
its range from the other nodes. Once all the data has been received, the algorithm starts
merging the sorted runs using m-way merging, which combines multiple input runs into

one sorted output. Several iterations over the data might be required until both relations
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are fully sorted. The number of iterations dr g} needed to merge the data depends on the

number of runs Ng sy and the merge fan-in Ngy,in.

dR = [longan_in (NR/ (Nmachines : Nthreads/machine) )-‘
(3.17)

dS — HOngan_m (NS / (Nmachines : Nthreads/machine) )-‘

From the depth of both merge trees and the rate Ppege at which each thread can per-
form the merge operation, we can determine the time required to merge the runs of both

relations in order to create two globally sorted relations.

R
Tmer e — dg -
¢ a Nmachines : Nthreads/machine : Pmerge
(3.18)
S
+ ds - 51

Nmachines ' Nthreads/machine : Pmerge

After the sorting phase, both relations are partitioned among all the nodes. Within each
partition, the elements are fully sorted. To compute the join result, each thread scans the

inner relation with the corresponding partition of the outer relation at the rate Pjc.,.

|B| + 15]

Nmachines : Nthreads/machine ' Pscan

(3.19)

Tmatch =

Similar to the radix hash join, Equation 3.19 does not include the time required to mate-

rialize the output of the join as this depends vastly on the selectivity of the join.

Since all the phases described by the formulas above, i.e., histogram computation, local
partitioning, sorting, merging, and matching, are executed in sequence with no overlap,
the total execution time of the sort-merge join Ty is equal to the sum of the execution

times of each of those phases.

Tsmj = Thistogram + Tpartition,local + Tsort + Tmerge + Tmatch (320)
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3.4 Experimental Evaluation

We evaluated our implementation of the distributed join algorithms on a cluster of ten
machines connected by 4x QDR and 4x FDR InfiniBand. All algorithms use RDMA Verbs
as their communication interface. The goal of this evaluation is to understand how to use
RDMA in the context of distributed rack-scale database systems. We also compare the

distributed algorithms to highly optimized, single-machine implementations.

3.4.1 Workload and Setup

To facilitate comparisons with existing results, we use similar workloads to the ones em-
ployed by previous work on join processing [KKSCT09, AKN12, BTAO13, Ball4, BTAO15,
BLAKI15, BMST™17]. These studies assume a column-oriented storage model in which join
algorithms are evaluated on narrow 16-byte tuples, containing an 8-byte key and an 8-byte
record id (RID). The record identifiers are range partitioned among the compute nodes.
By default, the key values follow a uniform distribution and can occur in arbitrary order.
Similar to previous work, we focus on highly distinct value joins. For each tuple in the
inner relation, there is at least one matching tuple in the outer relation. The ratio of the
inner and outer relation sizes which are used throughout the experiments are either 1-to-1,
1-to-2, 1-to-4 or 1-to-8. To analyze the impact of data skew, we generated two skewed
datasets, with different values of the Zipf distribution: a low-skew dataset with a value
of 1.05 and high-skew dataset with a skew factor of 1.20. To assign partitions to nodes,
we implemented a static round-robin assignment and, for skewed workloads, a dynamic
algorithm which first sorts the partitions based on their element count before assigning

them evenly over all machines.

During the partitioning phase, the 16-byte <key, RID> tuples are compressed into 8-byte
values using prefix compression. Radix partitioning groups keys with log( Ngn.out) identical
bits. The partitioning bits can be removed from the key once the tuple has been assigned
to a partition. A similar operation can be applied to the common bits within a range of

the sort-merge join. If an input relation contains less than 274 billion tuples (4 Thytes
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Figure 3.7: Performance of the InfiniBand network for different message sizes.

per relation), the key and the record id can be represented with 38 bits each. When the
system has 4096 threads, the minimum fan-out that is needed in order to assign at least one
partition to every thread is 2!2. Hence, a tuple can be compressed into 2-38 — 12 = 64 bits.
This compression algorithm reduces the total amount of data that needs to be transmitted

by a factor of two.

We evaluated our implementation of the distributed join on two clusters of machines
connected by a QDR and FDR InfiniBand network. The machines are connected through
a single InfiniBand switch. Each machine has a multi-core processor and several gigabytes
of main memory. The network cards are of type Mellanox ConnectX3. Networks can
either be bound by the maximum package rate which can be processed by the network
card or by the available network bandwidth. Figure 3.7 shows the observed bandwidth
on both the QDR and FDR network between two machines for message sizes ranging from
2 bytes to 512 Kbytes. One can observe that both systems can reach and maintain full
bandwidth for buffers larger than 8 Kbytes. This means that, unless otherwise stated,
the size of the RbMA-enabled buffers used in the communication phase of the algorithms

is fixed to 64 Kbytes. We also measured the maximum throughput that can be achieved
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with the IPOIB compatibility layer. This layer allows conventional T'cp/Ip applications
to run on InfiniBand networks. We measured a throughput of 1.4 Gbytes per second,
which is significantly lower than the native InfiniBand performance. An illustration of the

distributed InfiniBand setup can be found in Figure 3.8a.

In order to make our results comparable to a public baseline, we compare against two
highly optimized, single-machine algorithms [BTAOlS, BAT()lS]. Previous work noticed
that the algorithm by Balkesen et al. [BTAO13] did not run beyond certain amounts of
data [LLAT13]. We have extended the algorithm such that it can process larger data sizes.
In order to have a more realistic baseline, we have also modified the algorithm to make
it more NUMA-aware. In particular, we created multiple task queues, one for each Numa
region. If a buffer is located in region ¢, it is added to the i-th queue. A thread first
checks the task queue belonging to the local NUMA region and only when there is no local
work to be done, will it check other queues. With these modifications, the single-machine
algorithm reaches a throughput of 1.6 billion join argument tuples-per-second for 8-byte
tuples on 32 cores. An illustration of the large multi-core server for running the single-node

experiments can be found in Figure 3.8b.

3.4.2 Comparison with Centralized Algorithms

One of the first questions to ask is how the join algorithms behaves on the different
hardware configurations described in Figure 3.8. In order to be able to compare the
distributed join with the implementations from Balkesen et al. [BATO13], we selected a
high-end multi-processor server containing four sockets using eight out of the ten cores on
each socket and compared it against four nodes from the FDR and QDR clusters. On each
of the cluster machines we used eight cores. Thus, the total number of processor cores for

each of the hardware configurations is 32 physical cores.

Inside the high-end server the processors are connected via QuickPath (QPp1). Each proces-
sor is attached to two neighbors. Using the STREAM benchmark [McC95], we measured the
bandwidth with which one core can write to a remote NUMA region. The total bandwidth

offered by QP1 is not fully available to a single core. On different hardware configurations,
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Figure 3.8: Experimental setup composed of a high-end server machine and a large Infini-

Band cluster.

o6



3.4. Experimental Evaluation

[Z2 Partitioning [ Build-Probe

10.0

8.0
I
e}
C
3

g 6.0
2
9}
£
B
=
o

5 4.0
o
9}
X
[}

2.0

0.0

2 X X (2 X X (2 X 3
& é@ ‘}’0 & é@ L}‘Q/ & 0}‘0 L}(Q/
‘@(‘9 N Q}J\o w“'z’é\ on q-(’\\) v@é\ & %Oo
& L Y & L Y & L Y
< S 2
1024M - 1024M tuples 2048M - 2048M tuples 4096M - 4096M tuples

(a) Comparison of the distributed and centralized radix hash join for different

data input sizes and network speeds.

[ Sorting X3 Merging X3 Matching

14.0
12.0
=
T 10.0
c
o
1)
Q
2
o 80
£
c XX XXX
[}
5 6.0
1o
Q
x
Q
4.0
2.0
0.0
2 X (2 X (] <
'bé\\ ¥ \\\a’& rz,&\ 3 \\),;,0 ’b‘\\(\ \\{7&
N & N o N Q
& < & < & &€
& o & o & o
& § & § & S
1024M - 1024M tuples 2048M - 2048M tuples 4096M - 4096M tuples

(b) Comparison of the distributed and centralized sort-merge join for different

data input sizes and network speeds.

Figure 3.9: Comparison of distributed and centralized join algorithms.

57



Chapter 3. Rack-Scale Join Processing

we measured different values for the per-core write bandwidth, even within the same pro-
cessor family. In this dissertation, we show the results for the configuration which offered
us the highest inter-socket bandwidth, which peaked at 8.4 Gbytes per second. For the
distributed system, the measured bandwidth on the QDR network is around 3.6 Gbytes
per second. The FDR network offers a higher bandwidth with a peak performance close to
6.0 Gbytes per second. Both configurations have the same amount of main memory and

number of cores. The architecture of both systems is illustrated in Figure 3.8.

In the first experiment, we used three different workloads consisting of 1024 million,
2048 million and 4096 million tuples per relation. Because the baseline algorithms do not
use compression, we use 8-byte tuples for the centralized algorithms and 16-byte tuples
for the distributed versions. Although that means that the input size is twice as much,
the latter will be compressed to 8-byte elements early in the execution as explained in
Section 3.2. The results of the experiments are shown in Figure 3.9. For the hash join (see
Figure 3.9a), the centralized algorithm outperforms the distributed version for all data
sizes. This is expected because the algorithm has a lower coordination overhead and the
bandwidth between cores is slightly higher than the inter-machine bandwidth. For large
data sizes, the distribution overhead is amortized. The execution time for 4096 million
tuples per relation shows an increase of less than 20%. The sort-merge join (see Fig-
ure 3.9b) has a different ratio of compute and communication. The higher compute costs
of the sorting operation puts significantly less load on the network. The performance of
the sort-merge join on the FDR and QDR cluster is very similar. Therefore, we will only
show the numbers gathered on the FDR network in this dissertation. Both the centralized
and distributed algorithms exhibit identical performance. The execution of the distributed
algorithm for 4096 million tuples per relation shows an increase of less than 10% over the

centralized sort-merge join algorithm.

Both results clearly show that modern network technologies have fundamentally reduced
the costs of communication compared to traditional networks. The gap in performance be-
tween the internal processor interconnect and the external network is becoming narrower.
Distributed database algorithms are competitive and can reach a performance comparable

to that of single-machine algorithms.
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3.4.3 Scale-Out Experiments

In this section, we study the behavior of the proposed algorithms as we increase the number

of machines in the cluster.

Large-to—Large Joins

To study the impact of the input relation sizes on the performance of the distributed join
algorithms, we varied the input relation sizes and the number of machines. In large-to-
large table joins, both input relations are of the same size and each element of the inner
relation is matched with exactly one element of the outer relation. In this experiment, we
use relations ranging from 1024 million to 4096 million tuples per relation, and we increase

the number of machines from two to ten machines.

Figure 3.10a, Figure 3.10c, and Figure 3.10e present the average execution time of (i) the
radix hash join on the QDR cluster, (ii) the radix hash join on the FDR cluster, and
(iii) the sort-merge join on the QDR and FDR cluster (identical performance due to the
low network bandwidth requirements of the sort-merge join) for each of the three workloads
using different numbers of machines. We can observe that the execution time doubles when
doubling the amount of input data. The relative difference in execution time between the
first two workloads is on average a factor of 1.89, 1.89, and 2.07, for each join algorithm
respectively. The difference between the second and third workload is a factor of 2.00, 1.98,
and 2.02, for each algorithm respectively. The error bars shown in Figure 3.10 represent

the 95% confidence intervals.

The experiment shows that the execution time for a large-to-large join increases linearly
with the size of both input relations: doubling the relation sizes results in a doubling of
the total execution time of the join algorithm. The execution time for all three workloads
reduces as we increase the number of machines. However, we can also observe a sub-linear
speed-up when comparing the configuration with two and ten nodes of the radix hash join
on the QDR cluster. Assuming an optimal speed-up, this setup should lead to a five times

improvement in the execution time, which cannot be observed in this experiment.
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Figure 3.10: Execution time of the radix hash and sort-merge join algorithms for large-to-

large and small-to-large joins.
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Small-to—Large Joins

To explore the impact of the relative sizes of the inner and outer relations, we measured
the performance of the distributed join using an outer relation of fixed size, composed of
2048 million tuples, and a variable number of tuples for the inner relation. As described
in Section 3.4.1, the size of the inner relation ranges from 2048 million tuples (1-to-1

workload) to 256 million tuples (1-to-8 workload).

In Figures 3.10b, 3.10d, and 3.10f, we can observe that the execution time decreases when
reducing the size of the inner relation. The execution of the radix hash join is dominated
by the time needed to partition the data and the execution of the sort-merge join is
dominated by the time required to sort the input. These costs decrease with the size of
the relations. Therefore, when keeping the size of the outer relation fixed at 2048 million
tuples and decreasing the number of tuples in the inner relation, we can see a reduction

in the execution time by almost half when comparing the 1-to-1 to the 1-to-8 workload.

Analysis of the Radix Hash Join

In previous experiments, we observed a sub-linear reduction in the execution of the radix
hash join for all relation sizes when increasing the number of machines. To understand the
cause of this behavior, we take a closer look at the 2048 million > 2048 million tuple join
on the QDR and FDR clusters. Figure 3.11 visualizes the execution time of the different
phases of the join and illustrates the effects of scale-out in more detail. Since we only
consider a join operation complete once the last thread finishes, we include the difference
between the sum of the averaged phase-wise execution times and the maximum execution

time as the load imbalance.

During the first partitioning pass the data is distributed over the network. This phase is
completed once all the data has been sent out and acknowledged by the receiving hosts.
When increasing the number of machines from two to ten machines, we expect —in an
ideal scenario— a speed-up factor of 5. However, when examining the execution time of

the individual phases, one can observe a near-linear speed-up of the second partitioning
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Figure 3.11: Breakdown of the execution time of the radix hash join for 2048 million tuples

per relation.
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pass (speed-up by 4.79) and of the build-probe phase (speed-up by 4.57). On the QDR
network, the speed-up of the first partitioning pass on the other hand is limited because
the network transmission speed of 3.6 Gbytes per second is significantly lower than the
partitioning speed of a multi-core machine. As a consequence, the network presents a

major performance bottleneck and limits the speed-up.

On the FDR cluster, the higher bandwidth mitigates this problem for small deployments.
However, with an increasing number of machines, a larger percentage of the input data
needs to be transmitted over the network, which puts additional pressure on the network
component and does not allow us to fully leverage the performance gains of the increased
parallelism. Furthermore, adding machines to the network is likely to increase overall
network congestion during the network-partitioning pass if communication is not scheduled
carefully. The overall speed-up when scaling from two to ten machines is 2.92 on the QDR

cluster and 4.13 on the FDR network.

Analysis of the Sort-Merge Join

The sort-merge join interleaves sorting and data transfer. Because sorting tuples is a more
complex operation than looking at the radix bits of the join key, the sort-merge join has a
higher compute-to-communication ratio, which has a significant effect on the scalability of
the algorithm. Figure 3.12 provides a breakdown of the execution time for a 2048 million
1 2048 million tuple join on the FDR cluster. Because of the low bandwidth requirements

during the sorting phase, the numbers gathered on the QDR cluster are identical.

We observe that the absolute execution time of the sort-merge join is significantly higher
than that of the radix hash join. Despite this fact, the time required to complete all phases
of the sort-merge decreases as we add more machines. This is expected in a compute-bound
system. By adding additional compute nodes, the total amount of processors increases,
meaning that the amount of data each processor has to sort and join is decreasing linearly.
Although the compute part of the sorting phase is accelerated by a factor of 4.22, having an
increased number of parallel threads and processes increases the likelihood of stragglers. In

our implementation of the algorithm, a process waits for all incoming data before starting
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Figure 3.12: Breakdown of the execution time of the sort-merge join for 2048 million tuples

per relation.

the merge operation. Therefore, the overall execution time of the sort phase that includes
both processing outgoing elements and waiting for incoming tuples is only reduced by a
factor of 3.79. Nevertheless, the sort-merge join is able to scale to ten nodes with an
overall reduction of the execution time by a factor of 4.62, comparable to that of the radix

hash join on the FDR network.

3.4.4 Scale-Out Experiments with Increasing Workload

In order to deal with ever-increasing workload sizes, a common approach is to add more re-
sources to an existing system to maintain a constant execution time despite the increase in
data volumes. In the experiment, we vary the workload size from 2x 1024 million (~30 GB)
to 2x5120 million (=150 GB) tuples. For each increase in the data size by 512 million tu-

ples per relation, we add another machine to the system.

Figure 3.13 shows the execution time of each phase. One can observe that the algorithm

maintains a constant performance for the second partitioning pass as well as the build-
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Figure 3.14: Breakdown of the execution time of sort-merge join for an increasing number

of tuples and machines.

probe phase. When increasing the input sizes along with the number of machines, the
amount of data which needs to be processed per machine remains identical. Thus, all local
partitioning passes and the build-probe phase show constant execution time. However,
increasing the number of machines, leads to a higher percentage of the data that needs
to be exchanged over the network. Because the QDR network bandwidth is significantly
lower than the combined partitioning speed of all threads, the network will become a
significant performance bottleneck, thus leading to an increase in the execution time of
the network-partitioning phase. For the FDR network, the hash join becomes bandwidth-
bound only from seven machines onward, resulting in constant execution time for small,

and in a slightly higher execution time for large deployments.

The sort-merge join algorithm (see Figure 3.14) is compute-bound and can take full ad-
vantage of the added compute resources, resulting in a constant execution time. As we
increase the number of machines, small load imbalances cause a minor increase of the
sorting phase as threads not only have to process their input but also have to wait for

incoming data before being able to proceed.
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3.4.5 Impact of Data Skew

Similar to the authors of previous work [BLP11, Ball4], we populate the foreign key
column of the outer relation with two data sets. The first one with a low data skew which
follows a Zipf distribution law with a skew factor of 1.05 and a highly skewed data set
with a factor of 1.20. The relation sizes are 128 million tuples for the inner relation and

2048 million tuples for the outer relation.

In order to ensure that two skewed partitions are not assigned to the same machine, we use
a dynamic partition-machine assignment. In this dynamic assignment the partitions are
first sorted in decreasing order according to their element count. Next, they are distributed
among the nodes in a round-robin manner, thus preventing that the largest partitions are

assigned to the same machine.

With this workload, we see an increase in the execution time. This is true for all phases of
the proposed algorithms. The network phases are dominated by the time it takes to send
all the data to the machine responsible for processing the largest partition. Similarly, the
execution times of the local processing phases are also dominated by that same machine.
This effect is more pronounced for higher skew factors and a larger number of machines,
i.e., systems that offer more parallelism that is not used by the join algorithms because,
in the current implementation, each partition is processed by a single thread. For a setup
with four machines, we observed an increase in the execution time by up to 1.20x in
the presence of light skew, and 2.03x for the high-skew case. On eight machines, these
numbers increase up to 1.77x and 3.29x respectively. This result highlights the need
to share tasks between machines. Although heavily skewed partitions can be split and
distributed among threads in order to allow for a higher degree of parallel processing, the
current implementation only allows work sharing among threads within the same machine
and not across multiple machines, thus not fully exploiting the parallelism of the entire
system. Nevertheless, we are confident that this issue can be addressed by extending the
algorithm to allow work sharing between machines. Several recent publications address
this issue in the context of join operators [PSR14, RIKN16]. We include a discussion of

these mitigation strategies in Section 3.6.
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3.5 Evaluation of the Performance Models

In this section we validate the accuracy of the analytical model described in Section 3.3
by comparing its predictions to the experimental results gathered on both clusters. The
measured network throughput between two machines is 6.0 Gbytes per second on the
FDR network, respectively 3.6 Gbytes per second on the QDR network. In addition,
we observed a small performance degradation of the useful throughput when increasing
the number of machines on both InfiniBand clusters. This decrease is due to the fact
that adding machines increases the overall network congestion. For all the experiments
conducted in Section 3.4 we used eight cores on each machine. In this configuration, each

thread is able to reach a local partitioning speed of 110 million tuples per second.

Using Equation 3.2, we know that the join is compute-bound on the FDR network for
small deployments (i.e., six machines or fewer). Thus, the model predicts that all threads
partition the data at their full processing capacity (compute-bound). In all the other case
(i.e., on the QDR network and for large deployments of the FDR network) the radix hash
join is network-bound. Using Equation 3.2, we can compute the partitioning speed of
a thread for the network-partitioning pass. The second local partitioning pass is always
executed at the local partitioning rate. For the sort-merge join, we know that all phases
are bound by the speed of the processor and little load is put on the network. Figure 3.15
shows the predicted and measured performance of a 2048 million >1 2048 million tuple
join for four and eight machines. One can clearly see that the predictions provide a lower

bound on the execution time and closely match the experimental results.

Optimal Number of Threads for Network-Bound Systems

The analytical model described in Section 3.3 allows us to find the optimal number of
threads for a given hardware specification. Given Equation 3.2, we know that in order
to achieve maximum utilization of the network and processing resources, the number of
partitioning threads should be such that it can saturate the network without being fully

bound by the network bandwidth.
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Figure 3.15: Evaluation of the performance models of the radix hash and the sort-merge

join algorithms on four and eight machines.
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Figure 3.16: Execution time of the network-partitioning phase with four and eight threads

per machine on the QDR network.

Given the network speed and partitioning rate of the radix hash join, we can determine the
required number of processor cores for each algorithm and network. For the sort-merge join
this amounts to nine cores on the QDR and seventeen cores on the FDR network. For the
radix hash join on the other hand, this number is four cores per machine on the QDR and
seven cores per machine on the FDR cluster (assuming one thread per core). This means
that the configuration we used in the experimental evaluation for the radix hash join on
leads to a network-bound system on the QDR cluster. To verify this result, we conducted
two runs of experiments: the first run was performed with four and the second run with
eight threads. In Figure 3.16 we compare the execution times of the network-partitioning
pass on the QDR network. When increasing the number of machines, the percentage of
data which needs to be exchanged over the network increases. We can observe that from
five machines on-wards, four partitioning threads are sufficient to fully saturate the QDR
network. Adding additional cores (i.e., eight threads) will not speed up the execution as
the threads need to wait for network operations to complete before being able to reuse the

RDMA-enabled buffers.
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3.6 Discussion

Data Processing over High-Performance Networks: In this chapter, we have de-
veloped distributed versions of the most common join algorithms using RDMA. However,
the ideas described in this work, i.e. memory layout, reuse of buffers, and interleaving com-
putation and communication are general techniques and can be used to create distributed
versions of many database operators for use in combination with high-performance net-
works. In the experimental evaluation, we investigated a configuration that is network-
bound (i.e., radix hash join on the QDR network), configurations that use an optimal
number of processor cores compared to the network bandwidth (i.e., radix hash join on
the FDR cluster and the sort-merge join on the QDR cluster), as well as a configura-
tion that is compute-bound (i.e., sort-merge join on the FDR cluster). We observed that
when a faster network is used, the radix hash join can out-perform the sort-merge ap-
proach by a factor of two. These findings are in line with related work on centralized
algorithms [SD89, BATO13, Ball4]. Using the RMA network primitives in combination
with a RDMA-capable network, no core needs to be dedicated to receive incoming data
transmissions. Instead, data is immediately written to the correct location by the net-
work card. RMA operations move data from one buffer to another, i.e., a read operation
fetches data from a remote machine and transfers it to a local buffer, while the write
operation transmits the data in the opposite direction. Data located on a remote machine
can therefore not be loaded immediately into a register, but needs to be first read into
a local main memory buffer. This approach makes the distributed implementations very
similar to their single-machine counterparts, with the exception that data has to be ex-
plicitly flushed (i.e., RDMA write operation), similar to programming non-cache-coherent
machines in which data has to be explicitly loaded into the cache-coherency domain before
it can be used and changes to the data have to be explicitly flushed back to the source in

order for the modifications to be visible on the remote side.

Distributed v.s. Centralized Join Algorithms: The experiments clearly show that
distributed joins are at a similar level of performance than single-machine, parallel join

algorithms. In fact, our results indicate that modern multi-core hardware should be
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treated more and more as a distributed system as it has been suggested for operating
systems [BBDT09]. Our findings suggest that the answer to the question whether join
performance can be improved by scaling up or scaling out is dependent on the bandwidth
provided by the NUMA interconnect and the network. For instance, faster processor in-
terconnects and a higher number of cores per processor favor vertical scale-up, whereas
a higher inter-machine bandwidth would favor horizontal scale-out. In the experimental
evaluation, we could show that our implementation of a distributed join exhibits good
performance, despite the network being a bottleneck as we increase the number of cores
and the number of machines. Technical road-maps project that upcoming generations of
high-speed networks will be able to offer a significantly higher bandwidth (see Chapter 6),
which suggests that the impact of this bottleneck will be reduced and the performance of

the proposed algorithms will increase further when using many cores per machine.

Data Skew: In the experimental evaluation, we use uniform data, that is distributed
evenly among all the processor cores. The goal of this study is to investigate the maximum
achievable performance of the most popular join algorithms on large scale-out architec-
tures. To be able to process skewed data, good load-balancing needs to be achieved. Sev-
eral techniques have been introduced for hash and sort-merge algorithms. These techniques
are orthogonal to our evaluation and both join implementations could be enhanced to effec-
tively mitigate workload imbalances caused by data skew. Rodiger et al. [RIKN16, Rod16]
propose to detect skewed elements in the input with approximate histograms. The per-
formance impact of heavy hitters is reduced through redistribution and replication of the
skewed elements. The authors show that their join implementation achieves good perfor-
mance and is able to scale well on a rack-scale system. This process can be integrated into
the histogram computation and the network-partitioning pass of our radix hash join. In
Hpc applications, sorting is a commonly used operation. By default, sorting algorithms
can work with skewed data. Most distributed sorting algorithms can be put in one of two
categories: merge-based and splitter-based approaches. Merge-based sorting algorithms
combine data from two or more processes [Bat68]. Splitter-based approaches try to sub-
divide the input into chunks of roughly equal size [FM70, HY83, DNS91, KK93, SK10].

The latter category utilize minimal data movement because the data only moves during
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the split operation. In our implementation of the sort-merge join, we use a splitter-based
approach. When processing skewed data, techniques for finding the optimal pivot ele-
ments can be used [SK10]. We expect that a histogram-based technique for finding the
optimal splitter values can be integrated into the partitioning phase of our sort-merge join

implementation.

Result Materialization: In this work, we treated the join operation as part of an
operator pipeline in which the result of the join is materialized at a later point in the
query execution. It is worth pointing out that distributed result materialization involves
moving large amounts of data over the network and will therefore be an expensive op-
eration. Algorithms for slower networks, such as the TrackJoin [PSR14], compute an
optimal assignment of tuples to machines in order to minimize data movement. Although,
high-performance networks offer a significantly higher bandwidth, efficient materialization

techniques remain a crucial component of any query pipeline.

3.7 Related Work

Parallel Join Algorithms: In the Gamma database machine [DGGT86, DGST90]
tuples are routed to processing nodes using hash-based split tables. Identical split tables
are applied to both input relations, thus sending matching tuples to the same processing
node. This method reduces a join of two large relations to a set of separate joins which
can be executed in parallel. Schneider et al. [SD89] compared hash and sort-merge joins
on the Gamma database machine. They conclude that with a sufficient amount of main-
memory, hash-based join algorithms have superior performance to sort-merge joins. Most
modern hash join algorithms build upon the idea of the Grace hash join [KTMS83], where
both input relations are first scanned and partitioned according to the join attribute
before a hash table is created for each partition of the inner relation and probed with the
tuples from the corresponding partition of the outer relation. The findings of Shatdal et
al. [SKN94] and Manegold et al. [MBKO02, MBNO04] showed that a Grace hash join which

partitions the data such that the resulting hash tables fit into the processor cache can

73



Chapter 3. Rack-Scale Join Processing

deliver higher performance because it reduces the number of cache misses while probing
the hash tables. To avoid excessive TLB misses during the partitioning phase caused by
many random memory access to a large number of partitions, Manegold et al. [MBK02]
proposed a partitioning strategy based on radix-clustering. In cases where the number of
partitions exceeds the number of TLB entries or cache lines, the partitioning is performed

in multiple passes, each with a limited fan-out.

Join Algorithms on Modern Hardware: Kim et al. [KSCT09] have compared hash
and sort-merge joins to determine which type of algorithm is better suited to run on mod-
ern multi-core machines. In addition to their experiments, the authors also developed a
model in order to predict the performance of the algorithms on future hardware. Although
modern hardware currently favors hash join algorithms, they estimated that future hard-
ware with wider single instruction over multiple data (SIMD) vectors would significantly
speed up sort-merge joins. Blanas et al. [BLP11] re-examined several hash join variants,
namely the no partitioning join, the shared partitioning join, the independent partitioning
join, and the radix hash join. The authors argue that the no partitioning join, which
skips the partitioning stage, can still outperform other join algorithms because modern
machines are very good at hiding latency caused by cache and TLB misses. Their results
indicate that the additional cost of partitioning can be higher than the benefit of having
a reduced number of cache and TLB misses, thus favoring the no partitioning join. Al-
butiu et al. [AKN12] looked at parallel sort-merge join algorithms. The authors report
that their implementation of the massively parallel sort-merge (MPSM) join is significantly
faster than hash joins, even without SIMD instructions. Balkesen et al. [BTAO13] imple-
mented efficient versions of two hash join algorithms — the no partitioning join and the
radix join — in order to compare their implementations with previous studies and report
a maximum throughput of 750 million tuples (16-byte tuples) per second on 64 cores.
They show that a carefully tuned hardware-conscious radix join algorithm outperforms
a no partitioning join. Furthermore, the authors argue that the number of hardware-
dependent parameters is low enough, such that hardware-conscious join algorithms are as
portable as their hardware-oblivious counterparts. In a follow-up paper [BATOlB], the

authors further show that the radix hash join is still superior to sort-merge approaches
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for the current width of vector instructions. Lang et al. [LLAT13] show the importance
of NuMA-awareness for hash join algorithms on multi-cores. Their implementation of a

NuMA-aware join claims an improvement over previous work by a factor of more than two.

Distributed Join Algorithms: The work of Goncalves et al. [GK10, Gonl13] and Frey
et al. [FGKT09, FGKT10] has resulted in a novel join algorithm, called cyclo-join, op-
timized for ring-shaped network topologies. In the setup phase of the cyclo-join, both
relations are fragmented and distributed over all machines. During the execution, data
belonging to one relation is kept stationary while elements of the second relation are passed
on from one machine to the next. Similar to our approach, the idea is that the data is
too large to fit in one machine, but can fit in the distributed memory of the machines
connected on the ring. The cyclo-join uses RDMA as a transport mechanism. The cyclo-
join differs from our work in that it runs on an experimental system that explores how to
use the network as a form of storage. The hot set of the data is kept rotating in the ring
and several mechanisms have been proposed to identify which data should be put on the
storage ring [GK10]. In DaCyDB, the authors use RDMA to connect several instances of
MonetDB in a ring architecture [Gonl3]. FlowJoin is a distributed hash join algorithm
developed by Rédiger et al. [RIKN16] that can mitigate negative effects on performance
caused by data skew. Through the use of histograms, frequent elements can be detected
and redistributed in specific ways. This approach is complementary to the algorithms that
are studied in this dissertation. Rodiger et al. [RMUT14] propose locality-sensitive data
shuffling, a set of techniques, which includes optimal assignment of partitions, network
communication scheduling, adaptive radix partitioning, and selective broadcast intended
to reduce the amount of communication of distributed operators. Liu et al. [LYB17] design
and evaluate RDMA-aware data shuffling operators and compare different strategies and
implementations for exchanging vast amounts of data over high-performance networks.
Polychroniou at al. [PSR14] propose three variants of a distributed join algorithm which
minimize the communication costs. The authors tested their implementation of the pro-
posed join algorithms on a Gigabit Ethernet network. They show that the 3-phase and
4-phase track join algorithms can significantly reduce the overall network traffic. Recent

work around distributed joins [AU11, OR11] in map-reduce environments focuses on care-
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fully mapping the join operator to the relevant data in order to minimize network traffic.
These contributions show that the network is the main bottleneck for join processing, in

particular on conventional networks.

3.8 Summary

In this chapter, we presented two distributed join algorithms (radix hash and sort-merge
join) that make use of one-sided RMA operations as a light-weight communication mech-
anism. We evaluated both algorithms on RDMA-capable networks. We described how
RDMA-enabled buffers can be used to partition, sort, and distribute data efficiently. We
were able to show that the performance of the distributed join algorithms is highly depen-
dent on the right combination of processing power and network bandwidth. In addition
to the prototype implementations, we presented models of both algorithms and were able
to show that these models can be used to predict the performance of the algorithm with
very high accuracy. We performed an experimental evaluation of the algorithm on mul-
tiple hardware platforms using two different low-latency networks and a high-end server
machine. Our results show that both algorithms, the radix hash and the sort-merge join,
are able to scale well in rack-scale clusters and that the performance of the hash join is

superior to the sort-based approaches in such systems.
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The ability to efficiently query large sets of data is crucial for a variety of applications,
including traditional data warehouse workloads and modern machine learning applica-
tions [KNPZ16]. As seen in the previous chapter, our carefully tuned, distributed join
implementations for multi-core machines and rack-scale data processing systems exhibit
good performance. However, all these algorithms have been designed for and evaluated

on rack-scale systems with a limited number of processor cores.

This chapter not only addresses the challenges of running state-of-the-art, distributed
radix hash and sort-merge join algorithms on high-speed, RDMA-capable networks, but
also investigates their behavior at scales usually reserved to massively parallel scientific
applications or large map-reduce batch jobs. Operating at large scale requires careful
process orchestration and efficient communication. For example, a join operator needs to
keep track of data movement between the compute nodes in order to ensure that every
tuple is transmitted to the correct destination node for processing. Computation and
communication need to be interleaved in order to achieve maximum performance. These
problems become more challenging as we add machines and compute resources. In this

part of the dissertation, we explore how modern join implementations behave on a large
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number of cores when specialized communication libraries, such as MPI (see Section 2.1.3),
replace hand-tuned code. We show that at large scale, the performance of the algorithm
is dependent on having a good communication infrastructure that automatically selects

the most appropriate method of communication between two processes.

4.1 Problem Statement and Novelty

We implemented state-of-the-art, distributed radix hash and sort-merge join algorithms
on top of MPI, a standard library interface used in high-performance computing (HpPC)
applications, and evaluated the join implementations on two large-scale systems with a
high number of cores connected through a high-throughput, low-latency network fabric.
All algorithms are hardware-conscious, make use of vector instructions to speed up the
processing, access remote data through fast one-sided memory operations, and use remote

direct memory access (RDMA) to speed up the data transfer.

This is one of the first projects to bridge the gap between database systems and high-
performance computing. In the experimental evaluation, we provide a performance analy-
sis of the distributed joins running on 4096 processor cores with up to 4.8 Thytes of input
data. Novel insights from this work include: (i) Although both join algorithms scale well
to thousands of cores, communication inefficiencies have a significant impact on perfor-
mance. (ii) Hash and sort-merge join algorithms have different communication patterns
that incur different communication costs, making the scheduling of the communication
between the compute nodes a crucial component. (iii) Our performance models indicate
that the sort-merge join implementation achieves its maximum performance. The radix
hash join on the other hand is far from its theoretical maximum, but is still able to slightly
outperform the sort-merge join. However, in contrast to our findings in the previous chap-
ter, we will observe that due to communication inefficiencies in the network-partitioning
phase, the difference in performance between both approaches is no longer a factor of
two, making the sort-merge join a competitive approach on large-scale systems such as

supercomputers or cloud environments.
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4.2 Distributed Join Algorithms using MPI

The algorithms presented in this part of the dissertation follow the same mode of operation
as described in Section 3.2.1 and Section 3.2.2 for the radix hash join and the sort-merge
join respectively. It is worth pointing out, that the implementation of the algorithms
changes significantly when using MP1. In the following section, we describe the elements
of the algorithm that had to be adapted to be able to run on a high-end supercomputer.
Hpc applications are structured differently from system software. In particular, MpI
applications use a process-centric model and both join algorithms have been modified
to use multiple processes with one thread each, instead of instantiating a single process
per machine that uses many threads. Several of the hand-written sections of the code to

manage meta-data, such as histograms, have been replaced by high-level reduce operations.

4.2.1 Radix Hash Join Algorithm

Using MPI requires some fundamental changes to all communication-intensive phases of
the algorithm. For the radix hash join, these phases include the histogram computation

and the network-partitioning phase.

Histogram Computation

MP1 provides many high-level communication primitives such as reduce operations that
are useful for implementing a scalable histogram computation algorithm. Just like the
rack-scale version of the radix hash join algorithm, each process scans its part of the input
data and computes two process-level histograms — one for each input relation. In the
MPp1 version of the algorithm, these local histograms are combined into a global histogram
through an MPI_Allreduce call. We use the MPI_SUM operator as an argument to the
call. This operation combines the values from all processes — in our case it computes the
element-wise sum — and distributes the result back, such that each process receives a copy

of the global histogram.
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The join supports arbitrary partition-process assignments. Just like the algorithm de-
scribed in the previous chapter, in this implementation, we use a round-robin scheme to
assign partitions to MPI processes. To compute the window size, each process masks the
assignment vector with its process number such that the entries of the assigned partitions
are one, and zero otherwise. This mask is applied to the global histogram. The sum of all

remaining entries is equal to the required window size.

Computing the private offsets for each process and each partition is performed in three
steps. First, the base offsets of each partition are computed. The base offsets are the
starting offsets of each partition in relation to the starting address of the window. Second,
the relative offsets within a partition need to be computed from the local histograms
using a prefix sum computation. To perform this prefix computation across all processes,
Mpr1 provides an MPI_Scan functionality. This function returns for the i-th process the
reduction (calculated according to a user-defined function) of the input values of processes
0 to ¢. In our case, the prefix sum is implemented by combining the MPI _Scan function
with the MPI_SUM operator. Third, the private offsets of a process within a window can
be determined by adding the starting offset of a partition and the relative private offset.
At the end of this computation, each process is aware of (i) the assignment of partitions
to processes, (ii) the amount of incoming data, and (iii) the exact location to which the

process has exclusive access when partitioning its input.

Partitioning Phase

From the histogram computation stage, we know the exact incoming data size for each pro-
cess and input relation. MPI represents registered memory that can be accessed through
RMA operations in the form of a window (see Appendix B.2). Two windows will be al-
located: one for the inner and one for the outer relation. Because MPI_Win_create is a
collective routine, this phase requires global synchronization. After the window alloca-
tion phase, each process acquires an MPI_LOCK_SHARED lock on all the windows. We allow
concurrent accesses because the histogram computation provides us with the necessary

information to determine ranges of exclusive access for each partition and process. Next,
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similar to the rack-scale version, each process allocates a set of communication buffers for

each partition into which the process will partition the data.

After the setup phase, the algorithm starts with the actual partitioning and redistribution
of the input. Data is partitioned using the same vector instructions as the rack-scale
implementation. When an output buffer is full, the process will issue an MPI _Put into
its private offset in the target window. Interleaving computation and communication is
essential to reach good performance. Therefore, we allocate multiple (at least two) output
buffers for each remote partition. When all the buffers of a specific partition have been
used once, the process needs to ensure that it can safely reuse them. This is achieved
by executing an MPI Win flush. This operation ensures completion of all pending RMA
requests, independent of whether these requests operate on the same partition or not.
Therefore, this call is over-conservative. The alternative is to use request-based flushing

operations. However, the latter are not supported by all MpP1 RMA implementations.

After having partitioned the data, the shared window lock is released which ensures suc-
cessful completion of all outgoing RMA operations. After the call returns, the process
can release all its partitioning buffers. However, it needs to wait for the other processes
to finish writing to its window. This synchronization is realized through the use of an

MPI _Barrier call at the end of the partitioning phase.

Local Processing

The local processing phase includes subsequent partitioning passes as well as the build-
probe phase. This part of the computation does not require network communication.

Therefore, no modifications needed to be made to this part of the algorithm.

4.2.2 Sort-Merge Join Algorithm

Similar to the previous algorithms, significant changes to the implementation were required
to run on the supercomputer. The partitioning and sorting phases of the sort-merge join

algorithm have been modified to use MPI as part of their communication.
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Local Partitioning

During the local partitioning operation, every process tracks how many elements are as-
signed to each partition, thus creating a histogram. To compute the window size, a
process must know how much data has been assigned to it. The histogram from the
partitioning phase, together with the MPI_SUM operator, is given as an input to the
MPI_Reduce_scatter_block call. This call performs an element-wise reduction — in this
case it computes a sum — of all the histograms and scatters the result to the nodes. This
means that node ¢ will receive the sum of the ¢-th element of the histograms. The result

of the reduction is equal to the required window size.

Sorting Phase

The window size is passed as an argument to the MPI Win create call. To determine
the private offsets into which processes can write, the join algorithm uses the MPI_Scan
function with the histogram data and the MPI_SUM operator as input in order to perform
a distributed element-wise prefix sum computation, which provides the private offsets in

the memory windows into which a process can write.

Because of the variable size of the last run, the receiving process needs to be aware of the
amount of incoming data from every process. Otherwise, the algorithm cannot determine
where the last sorted run of process ¢ ends and the first run for process ¢ + 1 starts. To
that end, MPT_Alltoall is called on the histogram data, which sends the j-th element of
the histogram from process ¢ to process j, which in turn receives it in the i-th place of
the result vector. From this information, the algorithm can determine the start and end

offset of every run.

The sorting process proceeds by transmitting sorted chunks of data to the target win-
dow by issuing MPI _Put calls. At the end of these operations, a MPI_Win_flush call en-
sures that the data has been transmitted to the remote processes before releasing the
MPI_LOCK_SHARED locks that have been taken on the window buffers. The processes then

wait at an MPI Barrier in order to ensure that all incoming data has been received.
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Local Processing

The subsequent merge passes on the chunks of sorted data, as well as the scan through
the sorted data to find matching tuples, does not require any network communication or

coordination and thus did not require any modifications to run on the supercomputer.

4.3 Experimental Evaluation

In this section, we evaluate the MPI-based implementations on two high-end Cray super-

computers with thousands of cores and a high-speed Aries interconnection network.

4.3.1 Workload and Setup

In order to make our results comparable to previous work on join algorithms [KKSCT09,
BLP11, BTAO13, BATO13, BTAO15, BLAK15, BMS*17], we use the same workloads
as discussed in the previous chapter. The experiments focus on large-to-large joins with
highly distinct key values. The data is composed of narrow 16-byte tuples, containing an
8-byte key and an 8-byte record id (RiD). The record identifiers are range partitioned
among the compute nodes. The key values can occur in arbitrary order. Each core is
assigned to the same amount of input data. In our experiments, one process serves up to
40 million tuples per relation, which results in a total of 4.8 Thytes of input data on 4096
cores. The relative size of the inner and outer relation varies between 1-to-1 and 1-to-8.

The impact of different selectivities is also studied.

The Cray XC30 [Cral8] used in the experimental evaluation has 28 compute cabinets
implementing a hierarchical architecture: each cabinet can be fitted with up to three
chassis. A chassis can hold up to sixteen compute blades, which in turn are composed of
four compute nodes. The overall system can offer up to 5272 usable compute nodes [Swil8].
Compute nodes contain a single-socket 8-core processor (Intel Xeon E5-2670) and 32 GB

of main memory. They are connected through an Aries routing and communications ASIC
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and a Dragonfly network topology [KDSAO8] with a peak network bisection bandwidth
of 33 Thytes per second. The Aries ASIC is a system-on-a-chip device comprising four
NICs and an Aries router. The NICs provide network connectivity to all four nodes of
the same blade. Each NIC is connected to the compute node by a 16x PCI Express 3
interface. The router is connected to the chassis back plane and through it to the network
fabric. The second machine used for the experiments is a Cray XC40 machine. It has the
same architecture as the XC30 but differs in the node design: each compute node has two

18-core processors (Intel Xeon E5-2695 v4) and 64 GB of main memory per node.

The algorithms use foMPI [GBH13], a scalable MP1 RMA library that, for intra-node
communication, uses XPMEM, a Linux kernel module that enables mapping memory of
one process into the virtual address space of another, and, for inter-node communication,

uses DMAPP [tBR10], a low-level networking interface of the Aries network.

4.3.2 Comparison with Rack-Scale Joins

The experiments in the previous chapter have been conducted on two generations of Infini-
Band networks. Because the nodes of the supercomputer are also composed of multi-core
Intel Xeon CPUs and are connected through a low-latency network, we use the performance
results gathered on rack-scale systems as a baseline. We extrapolate the performance of
both algorithms on a larger number of cores using linear regression and compare this

estimate with the measured performance on the Cray XC30 system.

The comparison between the estimated and measured performance is shown in Figure 4.1
along with the 95% confidence intervals. For the sort-merge join, we can observe that the
measured performance follows the extrapolated line very closely. This is expected as the
algorithms puts little load on the network. For the radix hash join, we observe that the
performance is significantly below the expected performance on the FDR cluster and is
more in line with the results from the QDR network. This behavior is not expected, given
that the bandwidth offered by the Cray Aries network is significantly higher than the
one offered by QDR InfiniBand. In Section 4.3.3, we will show that the communication

pattern of the radix hash join incurs some significant performance costs that prevent
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Figure 4.1: Comparison of the throughput of join algorithms on rack-scale systems and
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Figure 4.2: Scale-out experiments of the radix hash join and sort-merge join algorithms

on the Cray supercomputer.

it from reaching its maximum performance and that cannot be observed in small-scale
experiments. In general, we can conclude that the algorithms proposed in this section

achieve similar performance than the rack-scale baseline presented in Chapter 3.

4.3.3 Scale-Out Experiments

Figure 4.2 shows the overall throughput of the radix hash join and the sort-merge join
along with the 95% confidence intervals as an error metric. We assign 40 million tuples to
each relation and core. Every tuple of the inner relation matches with exactly one element
of the outer relation. The results show that both algorithms are able to increase their
respective throughput as more cores are added to the system. At its peak, the radix hash
join can process 48.7 billion tuples per second. The sort-merge join reaches a maximum
throughput of 43.5 billion tuples per second on 4096 cores. The scale-out behavior of both
algorithms is sub-linear. When using 4096 cores, hashing outperforms the sort-merge
approach by 12%, which is significantly less than the performance difference observed on

rack-scale systems in Chapter 3.4.

36



4.3. Experimental Evaluation

Analysis of the Radix Hash Join

Figure 4.3a shows the execution time of the different phases of the radix hash join and
illustrates the effects of scale-out in more detail. We break down the execution of the join
as follows: (i) the histogram computation, which involves computing the local histogram,
the exchange of the histograms over the network, and the computation of the partition
offsets, (ii) the time required to allocate the RMA windows, (iii) the network-partitioning
phase, which includes the partitioning of the data, the asynchronous transfer to the target
process, and the flushing of buffers, (iv) the local partitioning pass, which ensures that
the partitions fit into the cache, and (v) the build and probe phase, in which a hash table
is created over each partition of the inner relation and probed using the data from the
corresponding partition of the outer relation. All times are averaged over all the processes.
Because we consider the join only to be finished when the last process terminates, we report
the difference between the maximum execution time and the sum of the averaged execution
times as the load imbalance. This value gives an indication of how evenly the computation

has been balanced across all cores and whether there are stragglers or not.

Given that we scale out the system resources and the input size simultaneously, one would
expect constant execution time of all phases. However, we observe an increase in execution
time as we add more cores, which explains the sub-linear increase in throughput shown
in Figure 4.2. We observe that the execution time of the histogram computation and the
window allocation phase remains constant. The network-partitioning phase on the other
hand increases significantly. Figure 4.3b shows a detailed breakdown of this phase. One
can observe that the time required to partition the data remains constant up to 1024
cores. Starting from 1024 cores, the partitioning fan-out has to be increased beyond its
optimal setting, which incurs a minor performance penalty. Most of the additional time is
spent in the MPI_Put and MPI Flush operations which generate the requests to transmit
the data, respectively ensure that the data transfers have completed. This increase is
caused by the additional overhead of managing a larger number of buffers and the lack
of any network scheduling. More details on the costs of communication at large scale are

provided later in this section. The local partitioning phase exhibits constant execution
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Figure 4.3: Breakdown of the execution time of the radix hash join for 40 million tuples

per relation per core.
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time because the per-core amount of data is kept constant throughout the experiment.
The build-probe operation on the other hand shows a minor increase in execution time
because the generated partitions get larger as we add more cores and process more data
overall. For the compute imbalance, i.e., the time difference between the average and
maximum execution time, we observe a clear increase as we add cores to the system.
This is expected as the supercomputer is shared by multiple organizations and complete
performance isolation cannot be guaranteed for large deployments. Furthermore, the nodes
involved in a large experiment cannot always be physically co-located, resulting in a higher
remote memory access latency for some nodes. We observe that the performance of the

hash join is influenced by a small number of stragglers.

Analysis of the Sort-Merge Join

Figure 4.4a shows the breakdown of the execution time of the sort-merge join. The indi-
vidual phases are (i) the range partitioning phase, which includes the histogram and offset
computation, (ii) the window allocation time, (iii) the time needed to sort and transmit
the tuples, (iv) the time required to merge the sorted runs, and (v) the time required to
join both relations. Similar to the hash join, the execution times shown in Figure 4.3a
are averaged over all processes and the difference between the average and total execution
time is reported as the load imbalance. For the sort-merge join, we can observe an increase
in the time required to partition and sort the data. For 2048 and 4096 cores, the parti-
tioning fan-out has to be pushed beyond its optimal configuration, which leads to a small
increase in execution time. The sort-merge join uses one single partitioning pass over the
data. However, given that the performance loss is small, a second partitioning pass does

not pay off at these scales.

In Figure 4.4b, we see that the sorting phase is dominated by the time required to sort
the tuples. The MPI _PUT operation time remains constant up to 1024 cores, followed by
a sudden increase in its execution time. This effect can be explained by the fact that
sorting is more compute intensive than hashing, which allows for better interleaving of

computation and communication. Furthermore, the communication pattern of the sort-
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merge join is better suited for the underlying network hardware. A detailed discussion
is provided later in this section. Given that the per-core data size remains constant, the

time required to merge and match the data does not change.

Analysis of the Network Communication

A key performance factor for both algorithms is the cost of communication. In previous
paragraphs we made the following observations: (i) The time required to execute all
MPI _Put calls is significantly higher for the hash join than for the sort-merge join. (ii) The
cost of enqueuing an MPI_Put request steadily increases for the hash join as the number
of cores is increased. (iii) The MPI_Put cost remains constant for the sort-merge join up

to 1024 cores, followed by a sudden increase in execution time.

These observations can be explained by the fact that the two algorithms have different
communication patterns. The hash join interleaves the partitioning and the network com-
munication. To that end, it allocates a temporary buffer space into which data is written.
Once a buffer is full, an MPI Put request is generated and a new buffer is used to continue
processing. Because the amount of buffer space is the same for every partition and uniform
data is used, the partition buffers will be scheduled for transmission at similar points in
time, causing temporal hotspots on the network. This is aggravated by having more pro-
cesses per machine. Because the hardware has a limited request queue, the processes will
be blocked while trying to enqueue their request, causing a significant increase in the time
spend in the MPI _Put call. This problem is further compounded as the partitioning fan-out
increases. During the network-partitioning phase, every process communicates with every
other process in the system simultaneously. Having more active communication channels

incurs a significant overhead.

The sort-merge join partitions the data into individual ranges before it interleaves the
sorting operation and the network transfer. A process only sorts one run at a time. After
the run is sorted, it is immediately enqueued for transfer. Alternating between sorting and
executing an MPI_Put calls creates an even transmission rate on the sender side. To avoid

over-saturation at the receiver, each thread starts processing a different range, i.e., the
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Table 4.1: Execution time for different workloads with variable relation sizes and selectiv-

ities for 1024 processes.

Workload Radix Hash Join Sort-Merge join
Input Output Time 95% CI Time  95% CI

40M/40M  40M  4.34s £0.15s 5.70s +0.14s
20M/40M  40M  3.45s £0.15s 4.67s £0.23s
10M/40M  40M  2.88s £0.29s 3.83s +0.27s
10M/40M  20M  2.92s £0.10s 3.75s +0.25s
10M/40M  10M  2.91s £0.18s 3.87s £0.41s

1-th process starts sorting range ¢ + 1. Since the data is distributed uniformly and the
processes are synchronized at the start of the sorting phase, for small deployments, they
remain synchronized throughout the entire phase. During any point in time, a process ¢
is transmitting data to exactly one process j, which in turn receives data only from the
1-th process. Without synchronization, this pair-wise communication pattern can only be
maintained for small deployments. In large deployments, nodes cannot be guaranteed to
be physically co-located and variable network latencies disrupt this pattern, causing the

increase in MPI_Put costs for 2048 and 4096 cores.

Effect of Input Size

To study the effect of different input data sizes and the ratio of the inner and outer relation,
we use several workloads: (i) a 1-to-1 input where each tuple of the inner relation matches
with exactly one element in the outer relation. We use 10, 20, and 40 million tuples per
relation and core; (ii) 1-to-N workloads, where each element in the inner relation finds
exactly NV matches in the outer relation. In Figure 4.5a, we see the performance of the
hash join for different input sizes. We observe that a reduction of the input size by half
does not lead to a 2x reduction in execution time. The execution time of both partitioning
passes as well as the build-probe phase is directly proportional to the input size. However,

the histogram computation, window allocation, and the compute imbalance are not solely
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Figure 4.5: Execution time of the radix hash join and the sort-merge join algorithms for

different input sizes.

93



Chapter 4. Large-Scale Join Processing

dependent on the input but have additional fixed costs. For the sort-merge join (see
Figure 4.5b), the time for sorting, merging, and matching the tuples is reduced by almost
half. Window allocation and compute imbalance are not directly affected by the input size,
resulting in a sub-linear speed-up. Table 4.1 (lines 1-3) shows the execution time of both
algorithms on 1024 cores for different relation sizes. One can observe that the execution

time depends primarily on the input size and is therefore dominated by the larger relation.

Effect of Input Selectivity

To study the impact of selectivity on the join algorithms, we use 1-to-4 workloads with 10
million and 40 million tuples per core. For each of the workloads, a different number of
output tuples is produced. In Table 4.1 (lines 3-5), we show that the performance of the
join remains constant for all three workloads. This is due to the fact that the execution
time of the join is determined by the size of the input, not its selectivity. The actual
matching of tuples only accounts for a small percentage of the execution time. Similar to
previous work [KSC*t09, BLP11, BTAO13, BATO13, BTAO15, BLAK15, BMS*17], we
investigate the join operation in isolation and do not materialize the output, i.e., we do

not fetch additional data over the network after the join result has been computed.

4.3.4 Scale-Up Experiments

When designing a distributed system, one is confronted with two design choices: scale-
out and scale-up. In order to determine which of the two options is better suited for
our implementations, we ran both algorithms on the Cray XC40 system, which allows
us to increase the number of processes to 16 cores per node. In addition, we performed

experiments on the Cray XC30 machine with 4 cores per node.

For both algorithms, we observe that the configuration with 4 cores per machine yields
the highest throughput. As seen in Figure 4.6, the radix hash join benefits from the
reduced interference as it is more memory intensive in its partitioning phase than the

sorting operation of sort-merge join. The performance of both algorithms suffers when
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increasing the number of processes to 16 cores per node. We measured that considerably
more time is spent executing the MPI_Put and MPI_Flush operations. More processes per
machine put more load on each individual network card, which makes it difficult to fully

interleave computation and communication.

In general, the more processes share the same network card, the more state the network
card needs to hold (connections, memory translations, etc.). This is an important observa-
tion because this phenomenon is difficult to observe in conventional clusters. We conclude
that the performance of both joins is directly related to the performance of the network

and the number of processes that share the same network card.

4.4 Evaluation of the Performance Models

Using the model of both algorithms, we can compare the estimated and measured execution
time. We use the models developed for the rack-scale experiments that are presented
in Section 3.3 and evaluated in Section 3.5. Table 4.2 summarizes the results of the
experiments along with the predictions of the model for both algorithms on 1024 cores.
To instantiate both models, we use performance numbers gathered through component-

level micro benchmarks on the Cray supercomputer.

For the hash join, we can see that the model predicts the performance of phases not
involving any network operation. The model does not account for the cost associated with
window allocation and registration. A significant difference comes from the noise inherent
to large systems. This is reflected in the compute imbalance and the waiting time after
the data exchange. From this observation, we can conclude that reducing the costs of the

network operations would significantly speed up the hash join.

Similar observations can be made for the sort-merge join. The difference between measured
and predicted execution time is due to the compute imbalance and the network wait time.
We observe that despite these two factors, the execution time of the sort-merge join is close
to the time predicted by the model, and the communication pattern of the sort-merge join

is well suited for the underlying hardware.
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Table 4.2: Evaluation of the performance models of the radix hash and sort-merge join

algorithms for 1024 cores and 40 million tuples per relation per core.

Radix Hash Join

Phase Exec. Time Model  Diff.
Histogram Comp. 0.34s 0.36s  —0.02s
Window Allocation 0.21s — +0.21s
Network Partitioning 2.08s 0.67s +1.41s
Local Partitioning 0.58s 0.67s  —0.09s
Build-Probe 0.51s 0.38s  +0.13s
Imbalance 0.62s — +0.62s
Total 4.34s 2.08s  +2.26s
Sort-Merge Join

Partitoning 1.20s 1.00s  +0.20s
Window Allocation 0.06s — +0.06s
Sorting 1.99s 1.78s  +0.21s
Merging 1.81s 1.78s  40.03s
Matching 0.26s 0.22s  +0.04s
Imbalance 0.38s — +0.38s
Total 5.70s 4.78s  +0.92s
Parameters [million tuples per second]

RHJ: Pscan = 225, Ppayy = 120, Poet = 1560, Phyild-probe = 210

SMJ: Ppart = 120, Psort = 45, Phet = 1560, Pmerge = 270, Pscan = 370, dijry =3
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4.5 Discussion

In this section, we discuss the outcome of the experiments focusing on the relative perfor-
mance of hashing and sorting, the costs of communication along with the importance of

network scheduling for the types of workloads used in the experiments.

Hash v.s. Sort at Large Scale: We look at the behavior of sort-based and hash-based
join algorithms on large scale-out architectures. Our findings show that the hash join is
still the algorithm of choice in terms of raw throughput. However, they also reveal that
several shortcomings prevent the algorithm from reaching an even higher throughput.
One significant disadvantage lies in the uncoordinated all-to-all communication pattern
during the first partitioning pass. Addressing this issue requires significant changes to the
structure of the algorithm, potentially resulting in a new type of algorithm. Although
the raw throughput is lower, the sort-merge join has several inherent advantages over its
competitor. The interleaving of sorting and communication creates a steady load on the
network. The fact that at each point in time every node has exactly one communication
partner makes more efficient processing on the network possible. This implicit scheduling
can be maintained up to a thousand cores, after which more sophisticated scheduling
methods are required. In addition, the sort-merge join outputs sorted tuples, which might

be advantageous later on in the query pipeline.

Network Scheduling: Issuing MPI_Put requests is significantly more costly for the radix
hash than for the sort-merge join. This is caused by the fact that the underlying hardware
can only handle a limited number of simultaneous requests. To improve performance, these
operations need to be coordinated. The results show that the performance of the hash
join suffers from not having an effective scheduling technique. This problem is aggravated
as more processes share the same network card. The sort-merge join avoids this problem
at small scale as each process starts sorting a different range of the input. Despite this
implicit network schedule, we observe that significantly more time is spent in the network
calls as the number of cores increases. In essence, light-weight scheduling techniques are

needed for both algorithms in order to maintain good performance while scaling out.
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4.6 Related Work

Database Systems and MPI: Liu et al. [LYB17] study the challenges of efficient
data shuffling operators over RDMA capable networks. To that end, the authors pro-
pose six data exchange algorithms and evaluate them on a modern InfiniBand network.
Besides testing different connection configuration parameters, e.g., reliable and unreli-
able transport services, they also evaluate different communication libraries, including
an MPI implementation. The proposed MPi-based exchange algorithms use synchronous
as well as asynchronous send/receive and broadcast primitives. Their findings indicate
that algorithms that use low-level communication interfaces can significantly out-perform
MPpi-based implementations. This observation highlights the importance of having a spe-
cialized MPI implementation tuned for a specific network (e.g., foMPI [GBH13] for Cray
Aries) instead of using a generic MPI implementation running on many different network
technologies. Vectorwise [ZvdWB12] is an analytical database which originated from the
MonetDB column-store project and VectorH [CIR T 16] brings SQL to MapReduce environ-
ments by building on the multi-core support of Vectorwise. This system has been extended

to a distributed system using an MPI-based exchange operator.

Data Processing on Supercomputers: Some supercomputer vendors are increas-
ingly offering software for advanced data processing on their hardware. The Cray Graph
Engine [RHMM18] is an advanced platform for searching and traversing very large graph-
oriented structures and querying interconnected data. The engine is designed to scale
to supercomputer-sized problems. In their evaluation, the authors were able to process
queries with a trillion of triples, and, among other operations, performed join operations
on 512 nodes within seconds. Alchemist [GRW 18] is a framework for interfacing Apache
Spark applications with MP1 implementations. Alchemist calls MPI-based libraries from
within Spark applications, enabling them to run on a supercomputer. Smart [WABJ15] is
a re-implementation of a MapReduce framework directly using MPI as its communication
abstraction, and the Spark-MPI [MCJ*18] project adds an MPpI-based communication

layer to the driver-executor model of Spark.
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4.7 Summary

In this chapter, we proposed distributed hash and sort-merge join algorithms that use MpP1
as their communication abstraction. Just as with the rack-scale algorithms, these joins
are optimized to use one-sided memory operations in order to take full advantage of mod-
ern high-speed networks. Using MPI addresses several challenges arising from large-scale
distribution, primarily the automatic selection of the underlying communication method
and the management of communication buffers. We evaluated both join implementations
on two different distributed environments and showed that having the right balance of
compute and communication resources is crucial to reach maximum performance and scal-
ability. The proposed models show that the sort-merge join reaches its peak throughput.
Reducing the network overhead would significantly speed up the radix hash join. Despite

this fact, the performance of the radix hash join is superior to that of the sort-merge join.

Executing joins over large data sets in real-time has many applications in analytical data
processing, machine learning, and data sciences. Therefore, it is crucial to understand the
behavior of distributed joins at large scale. We showed that the radix hash and sort-merge
join algorithms scale to 4096 processor cores, achieving a peak throughput of 48.7 billion

input tuples per second.
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Concurrency control is a cornerstone of distributed database engines and storage sys-
tems. An efficient coordination mechanism that supports a high throughput of transac-
tions is a critical component for distributed database systems. Recently, the dramatic
increase in parallelism arising from multi-socket, multi-core servers and cloud platforms
has motivated both researchers and practitioners to explore alternative concurrency con-
trol implementations and weaker forms of consistency. Many of these proposals exhibit
significant differences in throughput when running on a large number of cores or ma-
chines. These systems apply a wide range of optimizations that impose restrictions
on the workloads the engine can support. For example, they give up serializability
in favor of snapshot isolation [ZBKHI17], impose restrictions on long-running transac-
tions [KN11, TZK™13, DNNT15], assume partitioned workloads [KKKNT08], or require to
know the read and write sets of transactions ahead of time [KKNT08, TDW*12]. Due to
the very different assumptions made and the wide range of performance levels achieved,
these systems are difficult to compare to each other. However, one common underlying
assumption is that Two-Phase Locking (2pPL) and Two-Phase Commit (2PC) — the primary

components of a textbook implementation of a database lock manager — do not scale.
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A recent evaluation of several distributed concurrency control mechanisms suggests that
a tight integration of concurrency control and modern networks is needed to scale out
distributed transactions [HAPS17]. While the costs of synchronization and coordination
might be significant on conventional networks, modern interconnects and new communi-
cation mechanisms, such as Remote Direct Memory Access (RDMA), have significantly

lowered these costs.

5.1 Problem Statement and Novelty

In this chapter, we explain how to design a lock-based concurrency control mechanism
for high-performance networks, establish a new baseline for running a lock manager on a
system with thousands of cores, and show that the low latency offered by modern networks
makes a concurrency control mechanism based on 2PL and 2PC a viable solution for large-
scale database systems. This approach makes our findings relevant for scaling out existing

database engines that use similar mechanisms.

The lock table used in this experimental evaluation supports all the conventional lock
modes used in multi-level granularity locking. The system operates following a traditional
design, as explained for instance in the Gray & Reuter book on transaction manage-
ment [GRI2]. We introduce neither optimizations and nor restrictions on transaction
structure, operations, or presume any advance knowledge of the transactions or sequence
of submission. We also do not use any pre-ordering mechanism such as an agreement pro-
tocol. Through the use of strict 2PL, the system provides strict serializability. To ensure
that transactions leave the database in a consistent state, the system uses conventional
2pC. The questions we seek to answer are how to implement 2PC and 2PL on modern
networks in order to achieve low-latency communication, how well the proposed mecha-
nisms can scale with the number of machines, and whether or not the algorithms can take

advantage of large parallel systems with hundreds of machines and thousands of cores.

Although, we focus on strong consistency in the form of strict serializability implemented

through strict 2PL, we also make sure that the system can be used by weaker isolation
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Figure 5.1: Architecture of the transaction processing system.

levels such as read-committed, a common isolation level used in database systems. In the
process, we establish a new baseline for running a combination of TPC-C and synthetic

workloads with different isolation levels on a supercomputer.

5.2 Distributed Transaction Processing using MPI

We develop a distributed lock table supporting all the standard locking modes used in
database engines (see Section 2.3.5). Figure 5.1 depicts the system that has three main
components: (i) the transaction processing layer is responsible for executing transaction
on behalf of the clients, (ii) the lock table and data layer contains the data that is being
manipulated as well as the data structures needed to synchronize data accesses, and (iii) the

communication layer designed for low-latency communication.

Similar to the results presented by Wei at al. [WDCCI18], we observed that, given the
performance characteristics and programming abstractions of current networks, a hybrid
approach composed of one-sided, two-sided, and atomic operations is need to build a
scalable and performing system. To overcome these limitations, we propose new commu-
nication primitives targeting data-intensive applications, including operations seeking to

accelerate transaction processing, in Chapter 6.
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5.2.1 Transaction Processing Layer

The transaction processing agents are responsible for executing the transactions. Each
agent runs in its own process, executes one transaction at a time, and is independent
of other transaction processing agents. There is no direct communication between the
transaction processing agents. Coordination is done exclusively through the lock-based

concurrency control mechanism.

Upon start-up, the transaction processing agent discovers all available lock servers as well
as the range of locks for which they are responsible. Each lock server is responsible for
a fixed number of locks. With this information, the transaction agent can forward lock

requests to the appropriate section of the lock table.

When a new transaction starts executing, a local identifier is assigned to it. System-wide,
a transaction is uniquely identified by the combination of the transaction agent identifier
and the local transaction number. Apart from assigning an identifier to a transaction,
no additional setup is required. Next, the transaction acquires the required locks. To
request a lock, the transaction generates a lock request message that is transmitted to
the target lock server using a single one-sided RMA write operation. Each lock request
contains a predefined Lock request message tag. Furthermore, a lock request contains the
identifier of the lock, the identifier of the transaction processing agent, and the requested
mode. Corresponding response messages are identified by a specific Response message
tag. A response messages contains the same information as the request message, with the
addition of a flag indicating if the lock has been granted or not. When contacting a lock
server, the transaction agent stores the identifier of the lock server in order to be able to
inform it when the transaction is ready to commit or has been aborted. Once all the locks
have been successfully acquired, the transaction processing agent can access the data layer
through one-sided read and write operations. At commit time, the transaction decides if
the 2pC protocol needs to be executed. This is the case if data has been modified on
at least one remote machine, i.e., when one or more remote items have been locked in
exclusive (X) mode. If a vote is required, the transaction processing agent starts the Two-

Phase Commit protocol among all involved processes. Processes that did not contribute
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Figure 5.2: Lock table entry layout.

to a transaction do not participate in the vote. The transaction processing agent takes
the role of coordinator, registering how many positive and how many negative votes have
been collected. Once every participant has voted, the transaction processing agent informs
them about the outcome through the use of a End of transaction message. We do not use

any optimizations such as Presumed-Abort or Presumed-Commit [BHG8T7].

5.2.2 Lock Table and Data Layer

The lock table server processes are responsible for receiving and executing requests from
the transaction processing layer. They manipulate all relevant data structures used to
manage the locks: (i) the lock table containing the individual locks, (ii) the transaction
table, which contains lists of locks held by each transaction, and (iii) the deadlock detection

list that contains all the locks that can be part in a potential deadlock situation.

The data guarded by the locks in the lock table is co-located on these processes. It
is accessed by the transaction layer through one-sided memory operations. Apart from
loading the data and registering the buffers with the network card at start-up, the lock

table agent is not involved in data retrieval and manipulation operations.

The lock table contains all available locks together with their pending and granted requests.

Although it is logically one table, it can be distributed across multiple lock table agents on

105



Chapter 5. Large-Scale Transaction Processing

Transaction Table

............

Granted Group Counters Waiting Group Queue A- ot >
SIEEIEE]
[l=0E] N 7 W ey ¥
‘e N " red
. rad

Granted Group Counters Waiting Group Queue ¢ s

§ _
',.. “‘- |“‘
T | e

Granted Group Counters Waiting Group Queue

|
|
|
|
=
l.‘

.
e,
.

Figure 5.3: Auxiliary lock table data structures.

different physical machines. Each agent is assigned to an exclusive non-overlapping range
of consecutive lock identifiers. Therefore, accesses to the lock table entries do not need to
be synchronized. The ranges are chosen such that each server process is responsible for an
equal number of locks. This information is broadcast to the transaction processing agents
at system start-up. Each entry in the table corresponds to one lock. As seen in Figure 5.2,
the lock data structure is composed of a queue of pending requests (waiting group) and a
set of counters (granted group). The lock table supports multi-level granularity locking.
For each mode, there is exactly one counter indicating how many requests of that mode
have been granted. From this information, the lock mode can be computed. This enables
the lock server to quickly determine if the head of the request queue is compatible with

the granted requests.

The transaction table holds information of each running transaction. It implements a
multiset, i.e., for each transaction, the table contains a collection of all acquired locks
together with their request modes (see Figure 5.3). To ensure that a transaction can be
uniquely identified, this table operates on global transaction numbers. These 64-bit global
transaction numbers are based on the combination of the identifier of the transaction
processing agent (upper 32 bits) and a local transaction number (lower 32 bits) issued by
the transaction processing agent for each transaction that it executes. Although individual
locks can be released at any point in time, the primary purpose of the transaction table

is to implement an efficient strict 2PL system. In strict 2PL, there is no shrink phase
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Figure 5.4: Low-latency mailbox buffer management.

in which locks are progressively unlocked. Rather, all acquired locks are released by a
transaction upon commit or abort. Using this data structure, the lock table agent can
release all the locks held by a transaction without having to receive multiple or variable-
sized Unlock messages. This information is also useful to speed up the recovery phase in

case of failures [AAE94].

The lock table agents perform a time-based deadlock detection. To that end, the lock
table agent adds the current timestamp to all incoming requests before adding them to the
waiting group of the requested lock. Furthermore, each table agent keeps a list of local locks
that have pending requests (see Figure 5.3). The agent iterates over this list to determine
how long the head of the queue has been waiting to acquire the lock. A lock must be
acquired within a predefined time frame (e.g., 100ms). If a timeout occurs, the transaction
is informed about the unsuccessful lock attempt with a negative acknowledgment message
and the request is removed from the waiting group. This bounded-wait deadlock detection
mechanism (DL-BW) enables to resolve deadlocks while also avoiding an excessive abortion
rate in case of workload contention. When the last request has been removed from the
waiting group, either because it has been granted or because it timed out, the lock table
agent removes the lock entry from the list of locks with pending requests to no longer

include it in the computation of deadlock detection mechanism.

5.2.3 Low-Latency Communication Layer

In order to support a variety of high-performance networks, the communication between
the transaction processing layer and the lock table agents uses the Message Passing In-

terface (MPI) [Mesl2] as an abstraction. This has the advantage that the interface is
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identical for communication between local and remote processes, which hides the com-
plexities arising from large-scale distribution, while still delivering good performance by
using the most appropriate communication method based on the relative distance of the
processes involved in the communication. In our system, we use foMPI-NA [BH15], an
extention of foMPI [GBH13] (see Chapter 4.3) that introduces notified access commu-
nication primitives that aim to reduce synchronization latencies, especially for fine- and

medium-grained data transfers.

Communication between the transaction processing agents and the lock table agents is
performed exclusively using one-sided RMA operations. Upon start-up, each process allo-
cates a set of two buffers and registers them with the network card using MPI Win alloc.
This operation is a collective operation, which means that every process involved in the
communication needs to execute this operation. During window allocation, the access in-
formation to these buffers is exchanged between all processes, such that every component
of the system is able to read and write to these regions of memory using RDMA operations.
The first of these buffers is used as a mailbox for incoming messages. The second one is

used in the voting phase of the 2PC protocol.

Since the lock table agents can potentially receive requests from any transaction, their
mailbox is wide enough that it can accommodate one message from each transaction
processing agent. Each process in the transaction processing layer can have at most one
pending lock request that needs to be granted before it can continue processing. Therefore,
its mailbox size is such that it can hold a single message. Lock request, Response, and FEnd
of transaction messages are transmitted by issuing a MPI_Put notify call. This extended
MP1 interface is available in the notified access extension [BH15] of foMPI [GBH13]. This
call triggers a remote write operation similar to a MPI_Put with the addition of a notifi-
cation on the remote machine. Some network implementations refer to this operation as
a write with immediate. In order to avoid synchronization when writing to the mailbox,

the ¢-th transaction processing agent will write its content at the i-th slot in the mailbox.

On the target side, the lock table process can start listening for incoming notifications

by initializing the notified access support (MPI Notify init) and activating a request
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handle (MPI_Start). Using this handle, a process can either wait for messages (MPI_Wait)
or perform a non-blocking test to verify if a new notification has been created (MPI_Test).
Once a notification is ready, the target can read out the origin of the request and consume
the content at the respective message slot. Using notified access operations, avoids that
the target process has to iterate over all message slots, which would impact the scalability
of the communication mechanism. Furthermore, using a mailbox is beneficial for small
messages as the content of a request can directly be placed in a specific pre-allocated
region memory, which avoids any dynamic allocation of RDMA send and receive buffers
during execution. When a request is granted, the corresponding notification is placed
in the mailbox of the transaction using the same mechanism. The lock server agents
use the non-blocking test to check for incoming messages. If there is no new request to
process, they check for deadlocks. The transactions on the other hand use the blocking

wait operation as they cannot continue processing before the lock has been granted.

The second memory window is used during 2pC . It is wide enough to accommodate
a single 64-bit integer. Before broadcasting a vote request message to the lock servers
involved in a transaction, the transaction processing agent zeroes out this memory. Upon
receiving the vote request, the lock servers perform a remote atomic operation on this
memory, either incrementing the lower 32 bits to signal a positive vote, or the upper 32 bits
to trigger an abort. This is done by issuing an MPI_Fetch_and_op operation combined with
the MPI_SUM argument. Using an atomic operation makes use of the hardware-acceleration

available in these network cards and avoids expensive processing in software.

5.3 Performance Model

The throughput of the concurrency control system is dependent on the time required to
acquire locks. Acquiring a single lock requires (i) a message to be transmitted from the
transaction processing layer to the lock table server, (ii) the lock table servers checking
their notification queue for incoming messages, (iii) processing them accordingly, and

(iv) sending a message back to the origin of the request.
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In our model, a request spends t.omm amount of time in the communication layer. This

amount of time is dependent on the relative distance of the two processes.

tocal comm source & target on the same machine
teomm (SOUTCE, target) = (5.1)

tremote_comm otherwise

The expected time in the queue depends on the contention of the locks given the work-
load w: tguene(w). The workload also dictates the probability that a local lock is taken
Plocaliock (w) and the amount of locks a transaction takes Njes(w). Assuming independent

accesses, the probability that all locks are taken can therefore be determined.

Pall,local(w) - ]Dlocal,lock(w>NIOCkS(w) (52)

When at least one lock is remote, a two-phase commit protocol is executed at the end of
the transaction. The time required to execute the voting operation is tyot.. And the time
required to clean up a transaction is denoted as tciean up- From the above, we can determine
the execution time of an individual transaction. Given that acquiring a lock requires two

messages (a request and a response), the communication time has to be counted twice.

ttx(w) = Nlocks (w) -2 (Plocal,lock (w) : tlocal,comm + (1 - Plocal,lock (U))) : tremote,comm)

+ Nlocks(w) : tqueue(w) + (1 - Pall,local (’UJ)) : tvote + tclean,up

(5.3)

Each of the Ni core cores executes one transaction at a time. Therefore, the expected

throughput T'p(w) can be determined.

1

Tp(w) =
p( ) Ntx,core'ttx(w)

(5.4)

The above model, does not include the time required to access data and therefore only
represents the maximum throughput the lock table can support. In case data accesses
should also be considered, additional time tqa¢a(query) needs to be added to the execution

time of the transaction that is specific for the given query.
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5.4 Experimental Evaluation

In the experimental evaluation we study the performance of our concurrency control mech-

anism on a large-scale compute infrastructure with up to 5040 cores.

5.4.1 Workload and Setup

The experiments are conducted on the same supercomputer as the large-scale join ex-
periments in Chapter 4. We use the compute nodes of the XC40 partition of the system
described in the previous chapter. The machines contain two Intel Xeon E5-2695 v4 proces-
sors with up to 128 GB of main memory. The network remains unchanged. The compute
nodes are connected through a Cray Aries routing and communications ASIC [AKR12]

connected through a Dragonfly [KDSAO08] topology.

Our concurrency control mechanism implements a conventional lock table conceptually
similar to the one used in many existing databases systems. In order to gain insights
into scaling out conventional database architectures, we augmented the lock management
mechanism of the MySQL database server in order to get a detailed trace of all the locks
that get acquired. This information includes the transaction number, the identifier of the
acquired lock, and the requested lock mode. Using this modified database system, we
generated lock traces of the TPc-C benchmark using different isolation levels: serializable
and read committed. In a distributed database system, we envision that different lock
table agents are responsible for managing locks belonging to different TPc-C warehouses.
To be able to scale to thousands of cores, we configured the benchmark to simulate 2520
warehouses. The augmented lock manager provided us with a set of locks and their
corresponding lock mode that each transaction was granted. Using the official Tprc-C
description, we access data on that warehouse using one-sided read and write operations

once all the locks have been acquired.

To be able to study the effect of remote lock accesses, we designed a synthetic benchmark.

Each transaction acquires on average ten locks. Contrary to the TPc-C benchmark, we
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vary the probability of a lock not residing on a specific machine, thus changing the ratio
of local and remote locks that need to be acquired. In our evaluation, we acquire up to 50
percent remote locks. The lock mode for each request is taken uniformly at random. The

system does not access any data while running the synthetic workload.

5.4.2 Scalability and Isolation Levels

In these experiments, we deploy multiple configurations of the system. KEach node in
the system has 36 processor cores that are either assigned to the lock table layer or the
transaction processing layer. We found that deploying 18 lock table agents together with 18
transaction processing agents per compute node yields the highest throughput (13.6 million
transactions per second in serializable mode), compared to using 12 or 6 cores for the lock
table layer (10.2 million transactions per second and 4.72 million transactions per second,
respectively). Each process is bound to a dedicated core and the processes are distributed
equally over both sockets. A lock table agent is responsible for managing one or more
warehouses, while the transaction processing agents execute queries and transactions on
behalf of the clients. In TpPc-C, each client has a home warehouse which is accessed most
frequently. Therefore, it is reasonable to assume that clients connect to a transaction
processing agent that is located on the same physical machine as the data belonging to its
home warehouse. Requests targeting a specific warehouse originate from a single source
in the transaction processing layer. This setup also reduces the number of conflicts and
aborts as transactions targeting the same home warehouse are partly serialized within the

transaction processing layer.

We scale our implementation from a single machine up to 140 physical compute nodes,
which corresponds to a total of 5040 processor cores. In the execution of the Tpc-C
benchmark used to collect the traces containing the history of acquired locks by the trans-
actions, we used a total of 2520 warehouses. Although our concurrency control system is
agnostic to the workload and can support an arbitrary number of warehouses, using the
traces we collected, the transaction processing agents are limited to replaying transactions

that target up to the maximum number of available warehouses.
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Figure 5.5: Throughput of the TPc-C workload for two different isolation levels: read

committed and serializable.
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In Figure 5.5a, we see two executions of the TpPC-C trace, using different isolation levels.
The error bars represent the 95% confidence intervals. We can see that the system is
able to take advantage of the increased core count and is able to scale to thousands of
cores. We observe a linear performance increase as we scale out both layers of the system
simultaneously. At full scale, the table can support over 13.6 million transactions per
second in serializable mode. The throughput in terms of lock requests is independent of
the isolation level (see Figure 5.5b). This is an important aspect of the system as it makes
the behavior of the lock table independent of the provided isolation level. In both cases,
the lock table can sustain a throughput of over 800 million lock requests per second. This
in turn gives us a predictable throughput in terms of lock table operations and is part of
the reason why an isolation level requiring fewer locks (i.e., read committed) can achieve

a higher throughput (24.5 million transaction per second) in terms of transactions.

When adding compute nodes, both layers can be scaled out in the right proportions, thus
ensuring that no component is becoming the bottleneck. As resources are added, the
lock table can either be distributed with a finer granularity such that each table agent is
responsible for fewer locks. Alternatively the higher core count can be used to serve more

locks overall.

Furthermore, we can observe that a stricter isolation level requires taking significantly
more locks, which results in a lower transaction throughput. The serializable execution
of Tpc-C takes on average 53.2 locks per transaction, while running a transaction in the
read committed mode requires only 27.9 locks on average. The reported throughput in
serializable mode of 13.6 million — 5.9 million new order — transactions is significantly

higher than the official benchmark results [Tral8b].

5.4.3 Execution Time Breakdown

The majority of the execution time of the TPc-C workload is dedicated to acquiring locks.
Around 12 percent of the time is needed for accessing the data, executing the 2PC protocol,
and informing the lock table agents that a transaction has ended (see Figure 5.6a). There

are multiple reasons for this behavior. First, transactions request multiple locks, while
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there is at most one vote operation per transaction. Second, locks are acquired one after
the other as they are needed. For systems that require a deterministic behavior of the
workload, this time could be lowered by either requesting multiple locks in quick succession
or by issuing requests that target multiple locks, thus amortizing the round-trip latency.
Vote requests can always be issued and collected in parallel. The time required to execute
a vote is dependent on the slowest participant, not the number of participants. Third, the
majority of transactions targets the home warehouse of the client. Since transactions are
executed by a processing agent co-located with the locks and the data, most transactions
modify items in local memory and acquire only local locks. Transactions that do not
modify data on remote machines do not execute a 2PC protocol. Transactions that need
to execute the commit protocol often have a small number of participants in the voting

phase. A Tpc-C transaction needs to contact on average 1.1 lock table agents.

As seen in Figure 5.6b, acquiring a lock takes on average 2.8 microseconds. The majority of
the time is needed for inter-process communication (round trip time) and message queuing
within the communication. The more the lock table servers become the bottleneck, the
longer requests are being queued in the communication layer before they are being pro-
cessed by the lock table layer. Once the request has been received and is being processed,
it is added to the waiting group, in which it spends 0.13 microseconds, indicating that
there is only a small amount of contention in the workload. Finally, the remaining 0.38 mi-
croseconds are required by the lock table agent for checking if the request is compatible
with the current state of the granted group, updating the lock mode, and for preparing

the response message in order to inform the client about the outcome of the request.

The vote of the 2PC protocol requires 8.5 microseconds on average, which is longer than
the time required to acquire a lock. The reason for this behavior is that multiple servers
need to be contacted which does not happen completely in parallel. The more servers are
involved, the higher the chance that a single straggler will delay the outcome. Finally, in
our system, atomic operations are cached in fast memory on the network card and updates
to these values only become visible after an expensive synchronization call by the initiator
of the vote. In general, we observe that updates to atomic values become visible to the

processor faster in networks that do not rely heavily on caching intermediate values.
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Given that the Tpc-C workload, with its concept of a warehouse, can be partitioned across
many physical nodes, we observe that the latency of both operations does not change
significantly as we add more cores. This shows that our system exhibits predictable and

scalable performance for partitionable workloads.

5.4.4 Local and Remote Access Ratios

The ratio of local and remote locks that are acquired depends heavily on the workload.
Workloads that can be partitioned usually have a higher proportion of local accesses
than workloads that need to access data from different partitions. In TpPc-C, new order
transactions have a certain probability of accessing an item not belonging to the home
warchouse of the client that issues the transaction (1 percent per item). To investigate the
impact of remote lock accesses on the performance of the concurrency control mechanism,

we use the synthetic workload and vary the probability of accessing remote locks.

In Figure 5.7, we scale the synthetic workload to the same scale as the TPc-C traces,
namely 2520 concurrent transactions. The error bars represent the 95% confidence in-
tervals. Similar to previous experiments, we dedicate 18 cores per machine to serve the
lock table, and assign 18 cores to the transaction processing layer. We observe that the
throughput in terms of transactions decreases as more remote elements need to be locked
(see Figure 5.7a). This drop in performance has multiple reasons. The latency of a remote
lock request is higher than that of a local lock. In Figure 5.7b, we see that more time is
required to acquire the same number of locks. In addition, to more expensive lock opera-
tions, more overall time is needed for committing the transactions as more 2PC protocols
need to be executed before it is safe for the transactions to commit their changes. Further-
more, a transaction needs to collect votes from a higher number of participants. It also
needs inform more table agents that the transaction has ended. Although the clean-up
process is supposed to be executed in parallel, the costs of this phase increase as more lock
table servers are involved in managing the transaction and its locks. The combination of

these effects leads to an increase in execution time by a factor of 2.8 (see Figure 5.7b).
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5.5. Evaluation of the Performance Model

Table 5.1: Evaluation of the performance model of the concurrency control mechanism for

1260 and 2520 concurrent transactions.

Remote Lock Probability 0% 1% 5% 10%  25% 50%

Predicted Exec. Time [us] 67.500 68.833 73.511 78.236 88.521 101.992

1260 - Predicted Tp [M TX/s|] 18.67 18.31 17.14  16.11 14.23 12.35
1260 - Measured Tp [M TX/s] 19.70 18.03 1491 12.66  8.81 6.36

2520 - Predicted Tp [M TX/s] 37.33 36.61 34.28 32.21  28.47 24.71
2520 - Measured Tp [M TX/s] 39.39 36.26 30.19 2647 19.94  13.99

5.5 Evaluation of the Performance Model

The synthetic workload is useful as it enables us to evaluate the validity of the performance
model proposed in Section 5.3 under a variety of remote access probabilities. Table 5.1
shows the expected transaction runtime and throughput for 1260 and 2520 concurrent
transactions. When the probability of accessing a remote lock is low, the model is able
to accurately predict the measured throughput of the system. The difference between
the model prediction and the measurement is around 5 percent. In cases where many
remote locks are accessed, the model provides a lower execution time and the predicted

throughput is higher than the one measured on the supercomputer.

The model is able to accurately predict the amount of time it takes the query to acquire all
the locks. However, the execution times of the voting phase and of the clean-up phase — in
which the transaction processing agent instructs all involved lock table servers to release
the locks and clean up all associated data structures — are not constant. This phenomenon
can also be seen in Figure 5.7b. More lock table servers are contacted in workloads with a
high remote lock probability. In an ideal execution, the time to complete these two phases
is independent on the number of lock table servers as the voting and clean-up processes
are executed in parallel on all severs. However, small load imbalances cause this process

to not happen simultaneously, thus resulting in higher transaction voting and clean-up
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costs than predicted by the model, which in turn results in a lower throughput than what

is theoretically possible given the parallelism of the machine.

5.6 Discussion

Choice of Workloads: 1In the experimental evaluation, we used a combination of
Tpc-C and synthetic workloads to evaluate our lock table implementation. We observe
that the workloads used in this evaluation provide very little contention. This can be seen
by the short amount of time that lock requests spend in the waiting group. Note that
the baseline we provide in this dissertation intends to test the scalability of concurrency
control mechanism, not the scalability of the workload, a problem already pointed out
in related work [ZBKH17]. It is important to distinguish between the scalability of the
underlying mechanism that is offered by the database system and the characteristics of the
workload: In the presence of high-speed networks, a lock-based concurrency control mech-
anism is a scalable approach for enforcing high transaction isolation levels. To translate
this performance into a high throughput in terms of transactions, one requires a scalable
workload. This is not the same as having a partitioned workload, but rather depends on
the amount of contention present in the workload. Most database workloads do not have
a single highly-contented item and thus not a single lock that every transaction seeks to
lock in exclusive mode. However, if a workload exhibits such contention, for most concur-
rency control mechanisms, a lower overall throughput would be observed than what the
mechanism could support. In such a scenario, we would not observe a degradation of the
message passing latency, but rather an increased waiting time of requests in the queue or

a high abort rate if the deadlock detection timeout is too short.

One Mechanism for Many Isolation Levels: Using a weaker isolation level trans-
lates to fewer locks being taken and for a shorter period of time. This means that the
load on the lock table decreases and the freed resources could be added to the transaction
processing layer to process more transactions in parallel. The overall throughput can be

further increased as the isolation level requirements are lowered. Locking mechanisms are
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not only useful to implement pessimistic concurrency control. Snapshot isolation and op-
timistic concurrency control mechanisms can be implemented on top of a locking system,
not to prevent concurrent access, but to detect conflicts. In such systems, even fewer locks
are needed, e.g., in snapshot isolation, transactions do not take locks for reading data. As
seen in the comparison between serializable and read committed, solutions that take fewer

locks are expected to perform better.

Detecting Deadlocks: The deadlock detection mechanism used by this system is based
on timeouts (DL-BW). A request can only wait for a specific predefined period of time
in the waiting group before it is canceled. The idea is to detect deadlocks while also not
aborting too many transactions in case of light contention on one of the locks. In an
alternative design, the lock table agent could also construct a wait-for graph in order to
detect deadlock situations. Since two transactions can be conflicting on two locks managed
by two different table agents such a mechanism would require an additional communication

and synchronization protocol between the processes managing the lock table.

5.7 Related Work

In recent years we have seen a renewed interest in large-scale concurrency control due to

the increasing amount of parallelism and the benefits that it entails.

Schmid et al. [SBH16] propose a topology-aware implementation of MCS locks optimized
for high contention using one-sided network instructions. Yoon et al. [YCM18] design a
locking protocol based on fetch-and-add operations that is fault-tolerant and starvation-
free. Both approaches have in common that they only support two locking modes (shared
and exclusive) and cannot easily be extended to the six modes we support as this would
require wider machine words than those supported by atomic RDMA operations available

on current hardware.

Spanner [CDE"12] is a large-scale distributed database system that focuses on geographic
distribution. The system not only uses a lock table to implement concurrency control, but

also relies on GPs and atomic clocks to serialize transactions at a global scale. This setup is
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Table 5.2: Performance results for large-scale concurrency control mechanisms.

System/Paper Mechanism Cores TPC-C Perf.
Machines SNOT/s

This dissertation 2PL-BW 5.0k (140) 5.9M
HyPer [KN11] TS+MVCC 8 (1) 171k
Silo [TZK"13] MVOCC 32 (1) 315k
FaRM [DNN*15] 0CC 1.4k (90) 4.5M
NAM-DB [ZBKH17] TS+MVCC 896 (56) 6.5M
DrTm [WSC*15] HTM 480 (24) 2.4M
DistCC Eval* [HAPS17]  TS+MVCC 512 (64) 410k
9PL-NW 512 (64) 300k
0CC 512 (64) 100k
TS 512 (64) 430k
2PL-WD 512 (64) 340k
Calvin [TDW™12] 512 (64) 380k
Abyss* [YBP*14] 9PL-DD 1k (1) 760k
9PL-NW 1k (1) 670k

9PL-WD 1k (1) .
TS 1k (1) 1.8M
TS+MVCC 1k (1) 1.0M
0CC 1k (1) 230k
H-Store [KKNT08] 1k (1) 4.3M

* Marked systems only implement a subset of the Tpc-C workload.
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different from the one used in our evaluation, where the focus is on using high-performance
networks to achieve low-latency communication between all system components in a sin-
gle geographic location. Chubby [Bur(6] is lock service designed to provide coarse-grained
reliable locking. The design emphasis is on ensuring high-availability for a small number
of locks. This scenario is different from the locking mechanisms used in database sys-
tems that focus on achieving a high throughput for a large number of uncontended locks.
Furthermore, using coarse-grained locks is not suitable for some database workloads, for
example coarse-grained locking is sub-optimal for transactions that need to access a few

specific items.

FaSST [KKA16] is an RDMA-based system that provides distributed in-memory transac-
tions. Similar to our system, FaSST uses remote procedure calls over two-sided commu-
nication primitives. The authors pay special attention to optimizing their system to use
unreliable datagram messages in an InfiniBand network. Unlike our implementation, this
system uses a combination of optimistic concurrency control (OCC) and 2PC to provide se-
rializability. Although the evaluation does not include the TPc-C benchmark, the system
is able to outperform FaRM [DNCH14, DNN*15] on other workloads. DrTM [WSCT15]
is an in-memory transaction processing system that uses a combination RDMA communi-
cation primitives and hardware transactional memory (HTM) support to run distributed

transactions on modern hardware.

Table 5.2 shows an overview of selected related work. The performance numbers are taken
from the original publications. As a best effort, for systems that only implement a subset
of the Tpc-C workload (marked in the table by “*’), we converted their results to number
of successful new order transactions per second (SNOT/s) by assuming that the missing
transactions execute at the same speed as the mix of the implemented ones. Since the
performance of some schemes decreases with increasing core count, we take the highest
achieved throughput as peak performance. For the paper by Harding et al. [HAPS17]
(“DistCC Eval”), we use the numbers with 1024 warchouses, which are better than the
numbers with 4 warehouses presented in the same paper. The paper provides an evaluation
for the most popular concurrency control mechanism: Two-Phase Locking No-wait (2PL-

NW), Two-Phase Locking Wait-die (2PL-WD), optimistic concurrency control (OCC),
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multi-version concurrency control (MVCC), timestamp ordering (TS), and the mechanism

used by Calvin [TDW'12].

In the following, we describe the compromises done by the systems in Table 5.2. Some
databases, including FaRM [DNN*15] (4.5 million SNOT per second), implement opti-
mistic concurrency control (OCC) without keeping multiple versions and verify at the end
of each transaction that the read and write set does not intersect with that of concurrent
transactions. This approach requires that the changes of all transactions are being kept
during the lifetime of the longest-running concurrent query, which limits on how long that
period can be [KR81]. If several versions of each record are stored (MVOCC), such as in
Silo [TZK"13] (315 thousand SNOT per second), the read sets of read-only transactions do
not need to be tracked. Read-only transactions can be arbitrarily long. However, this is
not the case for read-write transactions. Multiversion concurrency control (MVCC) com-
bined with timestamps (TS) handles long-running read-only transactions. Long-running
read-write transactions may be problematic or impossible. For example, HyPer [KN11]
(171 thousand SNOT per second) forks long-running transactions into a new process that
sees the snapshot of the virtual memory at the time of its fork and cannot perform any
updates. Furthermore, transactions must be written as stored procedures in order to clas-
sify them as long- or short-running in advance. NAM-DB [ZBKH17] (6.5 million SNOT
per second) allows updates in long-running transactions, but only checks for write-write
conflicts, thus giving up serializability in favor of snapshot isolation. While snapshot isola-
tion is widely used, it is not without problems [WJFP17]. The other MVCC mechanisms
from Table 5.2 achieve good serializability by locking new versions until commit time and
aborting on updates of records with newer reads. This can lead to starvation in presence
of contention because the longer a transaction runs, the more likely it is that other trans-
actions access its (future) write set. If only a single version of the data is kept (T'S without

MVCC), this problem is even more pronounced.

Recent work on concurrency control proposes to deterministically order data accesses in
order to avoid any form of synchronization. While in H-Store [KKNT08] (4.3 million
SNOT per second), an early system following this idea, this approach did not work with

unpartitioned workloads due to the coarse-grained partition locking, newer systems such as
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Calvin [TDW*12] (380 thousand SNOT per second) overcome this issue. Both systems need
to know the read and write sets of each transaction beforehand (or detect them in a dry-
run). This assumption can only be made for stored procedures and is impractical for long-
running queries. In contrast, locking avoids the above-mentioned compromises. It provides
serializability, allows long-running read-write queries, and works with stored procedures
as well as sequences of client requests. As the performance comparison in Table 5.2 shows,
this mechanism does not introduce a significant overhead. Our throughput of 13.6 million

transactions per second (5.9 million SNOT per second) is among the highest reported.

5.8 Summary

In this chapter, we provided a new baseline for distributed concurrency control at large
scale. To that end, we implemented a conventional lock table and Two-Phase Commit
protocol using state-of-the-art communication primitives as can be found in modern HpcC
systems. Our implementation relies on low-latency communication mechanisms offered
by high-performance networks. In order to hide the complexity arising from large-scale
distribution, we use MPI as our communication layer. We evaluated our prototype of this
concurrency control mechanism on over a hundred physical machines and thousands of

cores using a combination of TPC-C and synthetic workloads.

Even without any special architecture or optimizations, our distributed lock table can sup-
port well over 800 million lock operations per second on 5040 cores. Thus, this work shows
that conventional Two-Phase Locking and Two-Phase Commit are a viable solution to im-
plement the highest levels of transaction isolation, namely serializability, while also being
scalable. Furthermore, this approach does not impose any restrictions on the workload
in terms of lock modes supported, structure of the transactions, deterministic behavior,
or support for long-running transactions. By using MPI to implement a low-latency mes-
sage passing mechanism, we show that our implementation is able to take advantage of
the scale-out architecture used in our evaluation. Provided that there is little contention,

local as well as remote locks can be acquired within a few microseconds.
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We have demonstrated that the proposed concurrency control mechanism can scale to
thousands of cores, reaching a throughput 13.6 million TrPc-C transactions (5.9 million new
order transactions) per second. These numbers can be used as a new baseline to evaluate
large-scale transaction processing systems and are competitive with all results published
so far. Since many database systems use a conventional lock table, our findings can also be
used to scale out existing systems requiring a low-overhead, distributed concurrency control
mechanism that can sustain a high throughput and take advantage of the parallelism

offered by large distributed systems.
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Outlook on Future Networks

The performance increase of future networks needs to be kept in line with other system-
level performance gains. To that end, most high-performance network manufacturers offer
a roadmap that provides an outline of the progression of interconnect technologies. In the
case of InfiniBand, the roadmap details the bandwidth of future iterations of the InfiniBand
technology for different port widths. Figure 6.1 shows that the first implementations that
reach 600 Gbits per second (12x HDR) are expected to appear on the market by 2019 and
a 1.2 Thits per second version (12x NDR) will be released in late 2020. This represents
a tremendous increase in bandwidth compared to the 56 Gbits per second (4x FDR)
used in the experimental evaluation in Chapter 3. Already with current state-of-the-art
networks, we observe that the performance of distributed joins is in a similar ballpark
as centralized algorithms. By installing multiple networks cards per machine (e.g., one
for each processor), it is conceivable that in future systems RDMA-capable inter-machine

networks outperform the internal interconnect in terms of bandwidth.

The trend towards a higher bandwidth has a lot of implications on the design of database
systems and algorithms [BAH17]. Analytical workloads can benefit from this increase

as the cost of data movement is a crucial factor. For example, the radix hash join is
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Figure 6.1: InfiniBand roadmap.

bound by the network bandwidth on the QDR cluster and can be accelerated by using
the faster FDR network. In the evaluation of the performance model in Section 3.5, the
optimal number of processor cores per machine is seven on the FDR network, meaning that
the configuration used in the experiments (i.e., 8 cores per machine) is close to optimal.
In this dissertation, we looked at the joins in isolation having the whole machine and
network at their disposal. To saturate a faster network link, more cores would need to
be dedicated to the join operation which poses its own set of coordination challenges
as seen in Section 4.3. Therefore, instead of accelerating a single query, the additional
bandwidth of future networks will be useful to run several joins or queries concurrently.
The deployment of multiple concurrent queries is a difficult task on multi-core, multi-socket
servers [GARH14] that requires a close integration with the operating system [GSST13,
GZARI16, Gicl6] and is likely to be challenging in scale-out architectures.

For transaction processing, latency is the dominant performance factor. Current network
technologies offer a latency in the order of a single-digit microsecond, a period of time
that is sometimes difficult to interleave with useful processing [BMPR17]. In addition,
many operations that database systems perform on a regular basis (e.g., appending data

to a queue, traversing an index structure, locking items in multi-level granularity locking)
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require multiple round-trips when using one-sided operations. This small programming
surface of RDMA hardware is a major limitation of modern networks. Most network cards
only implement message passing (send and receive), one-sided (read and write), and single-
word atomic operations (fetch-and-add and compare-and-swap) efficiently. The interface
that is exposed to software developers reflects the same abstractions. In the following
sections, we will have a detailed look at the limitations of common interfaces that we
identified during the development of the algorithms presented in this dissertation. We
argue that future networks need to offer more sophisticated instructions to overcome some
of these limitations. Finally, we will discuss how to implement this functionality in future

networking hardware.

6.1 Current and Future Network Interfaces

For the algorithms evaluated in this dissertation, we used two network interfaces: the Verbs
interface for the rack-scale join experiments and MPI for all experiments conducted on the
supercomputers. These two interfaces differ significantly in their design, abstractions, and
ease of use. While the Verbs interface is a low-level interface, MPI provides many high-
level functions. Both interfaces have their own set of advantages and disadvantages when

it comes to distributed data processing.

6.1.1 A Critique of RDMA Verbs

The RDMA Verbs interface is an abstract interface to RbDMA-enabled network cards. It
provides a set of calls for queue and memory management. Being a low-level interface
is both its biggest strength and weakness. While any application can create its set of
connections (i.e., queue pairs) and buffers (i.e., memory regions) as it is most desirable, the
interface places a significant burden on the application developer to implement the required
functionality. The interface was designed with no particular use-case in mind and does not
offer any high-level functions targeting a particular purpose. High-level operations need

to be implemented by the database system directly. These primitives would also need to
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be tuned to the underlying interconnect technology as different network implementations

have vastly different performance characteristics.

In addition, the interface has limited security features. Applications that know the address
of a remote buffer and have access to a queue pair within the same protection domain can

arbitrarily read or write data without any additional security checks.

Most network cards have a limited cache in which they hold queue pair and buffer address
translation information. As a consequence, applications need to keep the number of active
connections at a minimum. One way to address this issue in the context of a data center or
cloud computing provider is to share these resources among multiple applications. When
using RDMA Verbs, it is currently not possible to use existing connections, buffers, and
queues from within multiple applications in a safe way. To overcome these limitations, new
abstractions have been proposed, some of which suggest using an indirection tier within

the operating system to virtualize and manage the RDMA Verbs interface [TZ17].

6.1.2 A Critique of MPI

Although MPp1 offers many advanced communication features, using it in the context of
a database system comes with its own set of challenges. For example, the degree of
parallelism of an MPI application can be specified at start-up time by indicating the
desired number of MPI processes. Processes are identified by an integer number, the rank,
making them the fundamental unit of parallelism. Addressing processes directly instead
of generic endpoints is challenging for database systems and algorithms that are highly
multi-threaded. With the current standard, it is not possible to address a specific thread.
As a result, the implementations of the join algorithms proposed in this dissertation had

to be significantly changed before MPI could be used (see Section 4.2).

Many MPI operations are implemented as collective operations, meaning that every process
of the communication group, i.e., the context in which the collective call is executed,
has to participate in the call. Common examples of collective operations are reduce,

gather, scatter, and broadcast operations, but the list also includes management operations
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such as window allocation and deallocation, i.e., when a process needs to allocate a new
window, every other process that might potentially access its content has to participate
in the collective operation, regardless whether it will ever access the window at a later
point in time or not. In some MPI implementations, these operations represent a point
of synchronization in the execution. To avoid synchronization, in the case of our join

implementations, all windows are allocated in an early phase of the algorithm.

In a database system, some messages are latency critical while others are not. For ex-
ample, control messages and messages belonging to a transaction are usually small, while
analytical queries might require large data exchanges. In this dissertation, we look at join
processing and transaction processing in isolation. However, in a system handling a hybrid
workload of transactions and queries, it is crucial to avoid that small, latency-critical mes-
sages are scheduled behind large bulk transfers. The current version of the MPI standard

does not enable the developer to prioritize specific operations or flows.

Typical Hpc applications such as scientific applications, physics simulations, or weather
predictions, are started with a specific lifespan in mind. Their execution time lasts from
a few minutes to several hours. This is a different model than the one used for building
database systems. Ideally, a database system runs for an unlimited time. During its exe-
cution it is therefore likely that parts of the system fail and new components join. Failures
have to be contained and recovered from. However, MPI does not have the necessary
functionality to support adding and removing processes from a running application and

to notify the application in case of failures.

Despite these disadvantages, using standard communication libraries such as MPI instead
of hand-tuned code makes the application code portable. Given that MPI is an interface
description, an MPI application can be linked against many different library implemen-
tations, each tailored to a specific network. Using operations that have a rich semantic
meaning makes it possible to reason about the intentions of the application and enables the
developer of the communication abstraction to choose the right set of network primitives

and hardware-specific features in order to implement high-level operations efficiently.
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6.1.3 Beyond Read and Write Operations

Mpr1 as well as RDMA Verbs offer a limited set of one-sided RMA operations. In a nutshell,
both interfaces are limited to read and write (i.e., MPI_Get and MPI_Put) operations that
transfer data between local and remote memory regions. Both interfaces also offer simple
atomic operations. In many network implementations, such as InfiniBand, only compare-
and-swap and fetch-and-add are offered and accelerated by the hardware. To facilitate
the development of future systems, this set of operations needs to be extended. The
primitives offered by the network should be designed to meet the needs of a variety of data
processing applications. This section of the dissertation lists several important operations

that manipulate, transform, and filter data while it is moving through the network.
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Advanced One-Sided Operation

Similar to previous work, we found that one-sided operations are often limited in their
flexibility and ease of use [Hoel6, DNC17]. The operations presented in this section will
be useful in future networks to eliminate several round trips that are needed with current
network interfaces to accomplish specific tasks. We envision that these operations will
be implemented directly in hardware. Unlike a Remote Procedure Call (Rpc), these
operations will not be able to invoke arbitrary program functions, initiate system calls, or
issue additional network requests. Unlike a network instruction set architecture (NISA),

these methods are not intended to support user-defined programs.

Remote Append: During the hashing and sorting operation of the join algorithms,
the processes use one-sided RMA operations. Using one-sided write operations reduces
the amount of synchronization in these phases, as the target process does not need to be
actively involved in the communication in order for the transfer to complete. However,
the benefits of RMA do not come for free and require up-front investment in the form of
a histogram computation phase. Although computing and exchanging these histograms
can be done with great efficiency, this operation can be avoided in future RMA systems.
For example, a remote append operation, which would sequentially populate a buffer with
the content coming from different RMA operations would significantly simplify the design
of the algorithms and speed up the join implementations evaluated in this dissertation.
This operation would also be useful for any system manipulating remote, queue-like data
structures. For example, with the current generations of networks, adding an element to a
queue requires at least two round-trips: First, the end of the queue needs to be identified
and a slot for writing the data needs to be reserved. Afterwards, the actual content can be
added to the queue. The proposed append operation would enable the system to perform

the same operation in a single request as seen in Figure 6.2.

Remote Selection: Snapshot isolation is a concurrency control mechanism used in
many database engines. The advantage of this approach is that queries, i.e., read-only
operations, do not need to be synchronized with other concurrent transactions. Locks are

only needed to resolve write-write conflicts at commit time. The advantages of snapshot
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Machine 1 Machine 2

Version Attr. A Attr. B Attr. C

N
VvV
read
select:

Version = 2

&& A > B

Figure 6.3: Selection of items in a remote buffer based on specific attributes and version

numbers.

isolation can only be leveraged through careful memory management and version control.
When using one-sided operations to access data, following pointers to fetch a specific
version of a record can cause a significant amount of random remote memory accesses and
requires multiple round-trips. Instead, a remote selection operator could be used to only
return data belonging to the same version, thus enabling consistent reads. In general, a
remote section operator is not only useful in the context of snapshot isolation, but can
also be used to filter data before it is transmitted over the network, thus saving valuable

network bandwidth as seen in Figure 6.3.

Remote Aggregation: Similar to the remote selection, an aggregation algorithm can
save significant amounts of bandwidth. While data is processed by the remote network
card, it can be aggregated instead of being transmitted in its entirety. A remote aggrega-
tion operator can include simple aggregation operations (e.g., sum, max, min, avg). With
these primitives many meta-data information, such as histograms, can be computed di-
rectly by the networking hardware with great efficiency. These operations do not need to
be implemented inside network cards, but can also be placed inside routers and switches

in order to combine data coming from multiple streams and locations.
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Type-and Schema-Aware Operations

Traditional database systems operate primarily on structured data. Pushing down the
schema information to the network enables novel in-network processing applications and

operations that take the data layout into consideration.

Data Transformations: BatchDB [MGBA17, Makl17] is a database engine designed
to reduce the interference caused by hybrid workloads running in the same system while
maintaining strict guarantees with respect to performance, data freshness, consistency, and
elasticity. To that end, BatchDB uses multiple workload-specific replicas. These copies of
the data can either be co-located on the same machine or distributed across multiple com-
pute nodes. Transactions operate exclusively on a write-optimized version of the data, i.e.,
the primary copy. Updates to this component are propagated to the satellite replicas. The
replicas are responsible for converting the data into their respective format, applying the
updates, and signaling a management component that the updates have been applied. In
order to meet strict data freshness requirements, low-latency communication is essential.
To ensure that the system can be extended with future workload-specific formats, it is the
responsibility of each replica to convert the change set, which is sent out in row-store for-
mat, to its internal representation. Given that this data transformation typically involves
a significant amount of processing and copying, doing this step in software impacts the
performance of the satellite component. To that end, we propose that future networking
technology enables the destination node to push down simple rewrite rules to the network
card. The networking hardware should be able to change the data layout while writing the
incoming updates to main memory. Transforming data while it is transmitted is a general
mechanism which is useful to any system that requires many different data formats during

its processing.

Compression: A special case of data transformation is compression and de-compression
of data. Many databases store their data in compressed format and on-the-fly compression
and de-compression could be done by the network card as data is read from or written back
to remote memory, thus eliminating the CpU overhead of compression, avoiding unneces-

sary copy operations, and reducing the overall storage requirements. Such a functionality
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Tuples in Main Memory

Write with Type Information

Tuple Attribute Value

Figure 6.4: Translation of a write command with type information into attribute-level

accesses by the remote network card.

is not only important when accessing main memory, but can also be used in systems where

data is directly accessed from persistent storage, e.g., RDMA over Fabrics.

Attribute-Level Access: Many analytical queries are only interested in specific at-
tributes of a tuple. Having data stored in column-major format is useful in such cases, as
the operator only needs to access the specific memory regions where the desired attributes
are stored. In a row-major format, data belonging to the same tuple is stored consecu-
tively in memory. Although the majority of networks offers gather-scatter elements; in
large databases, it is not feasible to create one gather-scatter element for each individual
tuple. In addition, variable-length data often prevents computing the necessary offsets at
the origin of the request. Specifying a data layout and the set of attributes that need to
be read would enable the network card to determine a generic access pattern and only
transmit the desired attributes. This operation corresponds to a remote projection. When
writing data, this mechanism makes it possible to consolidate different attributes of dif-
ferent tuples in a single operation. For example, BatchDB forwards attribute-level change
sets. Since the updates need to be propagated to all replicas, having sufficient bandwidth

on the machine hosting the primary copy is important. To keep the bandwidth require-
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ments at a minimum, the transactional component only forwards the attributes of the
tuples that have changed. With precise type information, the network card could directly

update the corresponding attributes for each tuple individually as illustrated in Figure 6.4.

Conditional Operations

The only conditional operation that is offered by many state-of-the-art networks is the
remote atomic compare-and-swap operation. Conditional operations enable the developer
to create simple if-then-else operations. For an operation with condition check, the remote
network card will first evaluate if the remote data is in a specific state before applying
the operation, thus eliminating a round trip over the network and reducing the need for

running expensive synchronization or agreement protocols.

Conditional operations can be used to significantly accelerate the locking system proposed
in Chapter 5 of this dissertation. As described in Section 5.2, each lock consists of a request
queue and a granted group. A conditional operation is an efficient way to first check the
status of the lock and the queue. If the request can be granted (if-branch) the lock
counter is being incremented (using a fetch-and-add operation), otherwise (else-branch),
the request is added to the queue using the previously proposed append operation. All

these operations would require a single round-trip without involving the remote processor.

6.2 Current and Future Network Cards

Recent work on Field Programmable Gate Arrays (FPGAs) has analyzed how common
database operators can be accelerated. In combination with advanced network cards,
FrGAs can be used for bump-in-the-wire processing as well as to implement many of
the advanced network primitives described in Section 6.1.3. Furthermore, routers and
switches are additional places where advanced processing capabilities can be integrated

into the network infrastructure.
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Research on database hardware accelerators has shown that database tables can be an-
alyzed as they are retrieved from persistent storage and histograms can be computed at
virtually no extra performance cost. The same type of histogram computation can prove
useful for running distributed join operators that, as explained in Section 3.2, rely on his-
togram data to distribute the data using one-sided RMA operations. Furthermore, several
skew handling techniques mentioned in Section 3.6 use approximate or exact histograms
to detect frequent items. Using the techniques described by Istvén et al. [[WA14], these

histograms can be computed on the fly as the data flows through the network.

Furthermore, future network cards could be used to offload many data redistribution
operations, e.g., the radix partitioning of the hash join can be implemented in hardware.
Kara et al. [KGA17] accelerate the hash join by offloading the partitioning operation to an
FprcaA. This approach allows the join operator to use larger fan-outs than what is typically
possible on modern processors. As explained in Section 4.2, a large fan-out is required
when operating at massive scale in order to generate enough data partitions, at least
one for each core. Not only partitioned hash joins can be accelerated through the use of
Fprcas. FrGA-based acceleration of the sort operator, the integral part of the sort-merge
join and many other database operators, has gained significant attention [KT11, MTA12].
Casper et al. [CO14] propose an implementation of a sort-merge join on FpGaAs. We
postulate that future network cards, or combinations of FPGAs and network cards, can be

used to offload significant parts of the join algorithms proposed in this dissertation.

Direct implementations of relational operators in hardware will not be limited to joins.
Many database operations (e.g., selection, aggregation, projection, etc.) can be performed
by a specialized ASIC or FPGA. For example, the matching of regular expressions by a
run-time parametrizable regex operator can be used to implement an in-network selection
operator for specific string expressions [[SA16, BWT18]. In addition to individual opera-
tors, systems and architectures are being proposed for accelerating entire or parts of query

pipelines and data streams using FPGgas [MTA09, MTA10, STM™ 15, STOA17].

To be able to offload a variety applications, abstract machine models of ofioad-enabled

network architectures have been proposed [GJUH16] and low-latency network stack imple-
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mentations are available for FPGAs [SIA16]. Given the trend towards processing data as it
moves through the network, manufacturers are increasingly offering programmable high-
performance network cards. For example, Mellanox BlueField [Mel18a] is highly integrated
system-on-a-chip offering a multi-core processor, NVMe storage, and RDMA networking
functionality. Mellanox Innova-2 [Mell8b] is an InfiniBand and Ethernet network card
with an on-board FPGA. Enzian is a research computer that uses a combination of off-
the-self components and reconfigurable hardware to explore the design space of future

systems [ETH18].
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Conclusions

Modern database systems are challenged to process ever-increasing volumes of data. Given
the limited resources of a single machine, distributed systems are required. However, to
utilize the full potential of modern compute clusters, efficient data movement is critical
for both query and transaction processing. Recently, high-speed interconnects with RbMA
support have become economically viable beyond HPC systems and are being introduced
in many clusters and data centers. These networks significantly reduce the costs of com-
munication by offering high bandwidth and low latency. However, these performance
advantages do not come for free and can only be leveraged through careful design of the

database algorithms.

The dissertation took several important steps towards understanding the impact fast
interconnects have on large-scale query and transaction processing. This work stud-
ied hardware-conscious, main-memory, relational joins — one of the most complex and
communication-intensive database operations — on modern compute clusters in which the
machines are connected by a state-of-the-art, high-performance network. We discussed
two widely-used approaches for implementing join: hash- and sort-based algorithms. Our

findings show that algorithms need to be optimized not only for modern processor architec-
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tures but also for high-speed networks. In particular, these algorithms need to interleave
computation and communication, efficiently manage RDMA communication buffers, and
lay out their data structures in such a way that one-sided direct data access and placement
mechanisms can be used. Using these optimizations, distributed join algorithms achieve
the same performance as their single-machine counterparts on the same number of cores

while having the added benefit that they can scale to hundreds of machines.

Although the latency of accessing remote data is still higher than that of a local memory
access, modern networks and communication frameworks make it possible to reach every
node in the system within a few microseconds. In this document, we showed that this
latency is small enough to implement a high-performance, lock-based concurrency control
mechanism that can be used to implement the highest levels of transaction isolation —
namely read committed and serializable — without imposing any restrictions on the types

of workloads the database system can support.

We evaluated all our algorithms not only on a rack-scale cluster but also on large super-
computers that provided us with thousands of cores and a fast network. This dissertation
is one of the first research projects that combined traditional database algorithms with the
technologies used in HPC systems. Both communities can benefit from this interaction.
HpPc researchers have a lot of experience in creating scalable applications that can run on
thousands of processor cores. On the other hand, many large scientific computations can
be broken down into basic relational operators (e.g., selection, filtering, aggregation, join)
for which efficient algorithms exist. The work presented in this dissertation is one of the
first attempts in combining both aspects of computer science and the experiments con-
ducted on the supercomputers are one of the largest deployments of traditional database

algorithms to-date.

In Chapter 3, we analyzed distributed joins algorithms on a cluster connected by Infini-
Band QDR and FDR. The performance of the distributed algorithms is comparable to
that of optimized, single-machine implementations. The two algorithms place a differ-
ent load on the network. While the radix hash join with its all-to-all data exchange can

easily saturate the QDR network, the more compute-intensive sorting operation of the
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sort-merge join places an even load on the network. The importance of the compute-to-
communication ratio become visible in large deployments in Chapter 4. While the radix
hash join can out-perform the sort-based approach in a rack-scale cluster, on 4096 cores,
both algorithms achieve comparable performance. Despite this fact, the experimental re-
sults generally show that both algorithms scale well with the number of cores and are
able to reach a very high throughput of 48.7 billion input tuples per second. Many of our
findings are useful beyond the acceleration of joins. For example, the presented commu-
nication mechanisms are also applicable to other database algorithms such as large-scale
aggregation operations. In Chapter 5, we investigated the low-latency aspect of modern
networks in the context of a transactional database system with a lock-based concurrency
control mechanism. We showed that, given the latency of modern interconnects, Two-
Phase Locking (2pL) and Two-Phase Commit (2PC) are viable solutions for implementing
a large-scale transaction processing system. Traditional workloads, such as Tpc-C, can

be scaled to thousands of cores and millions of transactions can be processed each second.

In order to gain further insights into the behavior of the algorithms, we presented de-
tailed performance models for all algorithms. As described in Section 2.1.1, performance
modeling is an important aspect when developing applications for large HPC machines.
These models provide us with tight bounds on the execution of each individual phase of

the algorithms and enabled us to quickly identify inefficiencies in the implementations.

Throughout this dissertation, we explored different communication interfaces: (i) the
low-level RDMA Verbs interface for the rack-scale systems, and (ii) the high-level inter-
face offered by MPp1 for large-scale experiments on the HPC machine. In recent work, the
database community has been experimenting with MPI in various contexts. Our conclu-
sion is that both interfaces come with their own set of challenges. With RDMA alone,
completing the most basic remote operations often requires multiple round-trips over the
network or up-front processing (e.g., histogram computation). Therefore, a natural ques-
tion to ask is which functionality future communication abstractions need to expose. In
Chapter 6, we provided a set of instructions that manufacturers and researchers can use as
a guideline to steer the development of novel interconnects optimized for communication-

and data-intensive applications such as database systems.
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7.1 Research Outlook

The work presented in this dissertation opens up several interesting directions for future
research in the area of database systems, high-performance computing, and future net-

working technology.

Joins in Cloud Environments: While high-performance networks could only be
found in HPC systems and special niche solutions (e.g., database appliances) at the begin-
ning of my doctoral studies, today, these networks are being deployed in many data centers.
At the time of writing this dissertation, the first cloud computing providers started offering
virtual machines with RDMA-capable networks on an hourly basis. Cloud computing has
significantly changed the economic aspect of computing and hardware provisioning. It is
therefore an interesting direction for future research to study how the proposed algorithms
behave inside a cloud computing environment and what the exact cost/performance trade-
offs are. Having affordable access to a large number of machines with an advanced network
means that conducting large-scale experiments like the ones presented in this dissertation

will no longer require special access to a national supercomputer.

RDMA in a Query Pipeline: In this dissertation, we used RbMA and RMA to ac-
celerate join operations. It is important to note that the majority of our findings is not
limited to joins or individual database operators. Apart from accelerating other oper-
ations (e.g., aggregation), one should also explore the use of RDMA between operators,
i.e., inside a query pipeline. In this dissertation, we assumed a column-store layout and
focused on processing narrow tuples consisting of a join key and a record identifier, without
materializing the final result. In many column-store database systems, this materialization
step is usually performed in one of the final processing stages in order to fetch as little data
as possible. However, in queries that analyze and return large datasets, this step can po-
tentially be as expensive as computing the query. It is likely that materialization can also
benefit from many of the optimization techniques discussed in this dissertation. Therefore,
the usage of RDMA between operators in general, and in the result materialization step in

particular, represents a challenging direction for future investigations.
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A Database for Supercomputers: This work is one of the first building blocks to-
wards developing a database that can run at the scale of a supercomputer. Our results
show that even the most complex operators and concurrency control mechanisms can
scale to thousands of cores. Given that supercomputers often require significant invest-
ments at a national level, the users of these systems are reluctant to use non-optimized,
generic data processing frameworks as they often exhibit sub-optimal performance. There-
fore, in combination with the query processing pipeline mentioned above, creating such a
hardware-conscious distributed database system for HpPC computers would be useful for
many large-scale scientific applications that often re-implement many common database

operators from scratch.

Concurrent Data Processing: In this dissertation, we analyzed query and transaction
processing in isolation. Furthermore, we focused on executing a single join operator at
a time. However, in many database systems, several queries are executed concurrently.
Until now, the limited bandwidth of commodity networks represented a major bottleneck,
especially in cases where several queries competed for the same network resources. Modern
high-performance networks significantly reduced the impact this limitation. Our results
have also shown that many cores are required for a join to fully saturate the bandwidth of
a high-performance network. As networks become faster, one has therefore two options:
One can either dedicate more cores to a single query (i.e., to a single join operator), or
make use of the higher bandwidth to run two join operations concurrently. Both options

are worth an in-depth exploration.

Implementation of New Communication Primitives: In Chapter 6, we presented
several new communication primitives that future networks should support. At the same
time, FPGAs are being increasingly adopted as the research platform of choice to accel-
erate database operations. Since many manufacturers offer combined network card and
FPGA solutions, the implementations and evaluation of new communication abstractions
represents an interesting direction for future work. We estimate that a significant part
of the algorithms presented in this dissertation can be offloaded to and accelerated by

specialized network cards and switches.
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7.2 Concluding Remarks

This dissertation seeks to further the state-of-the-art in distributed query and transaction
processing for parallel in-memory database systems. We explored how join algorithms
and lock-based concurrency control mechanisms behave when high-bandwidth, low-latency
networks are used. We evaluated these algorithms on rack-scale clusters with a similar
architecture to that of commercial database appliances as well as on large HPC clusters. By
combining traditional database algorithms with the technologies used in HpPC systems, we
were able to conduct experiments on thousands of processor cores, a scale usually reserved
to massively parallel scientific applications or large map-reduce batch jobs. Operating
at large scale requires careful process orchestration and efficient communication. Our
results show that this setup poses several challenges when scaling out database systems.
For example, the algorithms need to keep track of data movement between the compute
nodes, use many different communication primitives offered by the underlying hardware,
and interleave the communication and processing. At large scale, the performance of the
algorithms is dependent on having a good communication abstraction and future networks

are likely to significantly expand the set of instructions they expose to the applications.

In the future, high-performance networks with RDMA support will offer an even higher
bandwidth and a lower latency, further reducing the costs of communication. In addition,
these RDMA-capable interconnects will become omnipresent. For example, cloud com-
puting providers are starting to extend their offerings in this direction. In light of these
trends, this dissertation re-evaluates multiple database algorithms used in query and trans-
action processing, and proposes novel techniques and design principles that enable future

distributed database systems to take full advantage of this new generation of networks.
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Programming with RDMA Verbs

A.1 Connection Setup

Setting up an RDMA connection using the RDMA Verbs Interface involves several steps
and is relatively cumbersome. Furthermore, the connection setup varies slightly between
different network implementations. In this dissertation, we therefore limit our explanations

to the InfiniBand network that is used in the experimental evaluation in Chapter 3.

The fundamental connection abstraction is the queue pair. Before a queue pair can be
created, the necessary completion queues have to be instantiated, using the ibv_create_cq
call. Afterwards, the ibv_gp_init_attr struct has to be populated before it can be passed
to the ibv_create_gp method that will instantiate the queue pair. The data structure
contains pointers to the completion queues, the maximum number of work requests these
queues can hold, the maximum number of a scatter-gather elements per request, and
various other information relevant to the creation of a connection.

struct ibv_qp_init_attr {

void *qp_context;
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struct ibv_cq *send_cq;
struct ibv_cq *recv_cq;
struct ibv_srq *srq;
struct ibv_qp_cap cap;
enum ibv_qp_type qp_type;
int sq_sig_all;
s
struct ibv_qp *ibv_create_qp(struct ibv_pd *pd, struct ibv_qp_init_attr

xgqp_init_attr);

Once the queue pairs have been created, they need to be connected pairwise. The con-
nection setup happens in several steps. First, the queue pair is transitioned to the initial
IBV_QPS_INIT state and the queue pair number, sequence number, and device identifier
are transmitted to the other side. This exchange usually happens through an out-of-band
connection. This information is used to partially fill a ibv_gp_attr struct that can be

used to alter specific aspects of the queue pair.

struct ibv_qp_attr {
enum ibv_qp_state qp_state;
enum ibv_qgp_state cur_qgp_state;
enum ibv_mtu path_mtu;
enum ibv_mig_state path_mig_state;
uint32_t qkey;
uint32_t rq_psn;
uint32_t sq_psn;
uint32_t dest_qp_num;
int qp_access_flags;
struct ibv_qp_cap cap;
struct ibv_ah_attr ah_attr;
struct ibv_ah_attr alt_ah_attr;
uintl6_t pkey_index;
uintl6_t alt_pkey_index;
uint8_t en_sqd_async_notify;
uint8_t sq_draining;
uint8_t max_rd_atomic;
uint8_t max_dest_rd_atomic;

uint8_t min_rnr_timer;
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uint8_t port_num;
uint8_t timeout;
uint8_t retry_cnt;
uint8_t rnr_retry;
uint8_t alt_port_num;
uint8_t alt_timeout;
i
int ibv_modify_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr, int

attr_mask) ;

Using the exchanged information, the queue pair is first transitioned into the ready to
receive (IBV_QPS_RTR) state using the ibv_modify qgp call. After successful completion of
this step, the queue pair is then put in the ready to send (IBV_QPS_RTS) mode. Afterwards,
it is connected to the other queue pair and fully operational. A queue pair can also be

linked to itself and operate as a loop-back queue.

In order to make the setup phase less dependent on the actual network implementation, the
RpMmA Connection Management Abstraction (RDMA-CMA) has been developed. It allows
for the creation of event channels over which the connection requests can be received and
the necessary queue pair information are being exchanged automatically. On InfiniBand

networks, this abstraction operates in a similar manner as described in this section.

A.2 Memory Registration

When using RDMA, the application has to manage all communication buffers manually in
user-space, register them with the network card, and distribute the access information to

the relevant system components.

An application first has to create buffers of appropriate size by using standard memory
allocation mechanisms such as malloc and mmap. As the majority of networks requires the
memory to be registered with the network card, RDMA Verbs provides the ibv_reg mr call

that, given a protection domain, address, size, and access flags, pins the memory such that
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it cannot be swapped to disk and installs the necessary address translation information
on the network card.

struct ibv_mr *ibv_reg_mr (struct ibv_pd *pd, void *addr, size_t length,

int access);

After the registration call, the function returns the memory region information, in partic-
ular the SKEY and RKEY of the registered buffer. Once the registration is complete, this
information cannot be altered. Changing the size of a region is possible in some network
implementations, but often requires a complete re-registration of the buffer. It is left to
the application to transmit the necessary access information to other processes. It is also
worth noting that the same piece of memory can be registered multiple times, for example

for security purposes when using two different protection domains.

A.3 Synchronizing Access to Remote Memory

Once memory is accessible to RDMA operations, adequate synchronization mechanisms are
needed to prevent concurrent accesses to the same piece of memory, similar to developing

multi-threaded algorithms and thread-safe data structures.

When using the RDMA Verbs API, it is left to the application to synchronize concurrent
accesses to the memory that is being shared over the network. It does not provide any
build-in mechanisms to grant accesses to a specific memory region. Any part of the
application that is in possession of the necessary access information can issue RDMA

operations, provided that the buffer is in a protection domain it has access to.

A.4 Remote Read, Write, and Atomic Operations

Once the necessary connections between the systems elements have been established and
memory has been registered with the network card, operations can be performed on these

regions of remote memory. Of interest are one-sided RMA operations that allow one
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process to read from or write to remote memory without the involvement of the pro-
cessor on the target machine. The RDMA Verbs interface provides a single interface,
i.e., the ibv_post_send call, for submitting all work requests. The user needs to fill out
the ibv_send wr work request struct. The struct contains the operation code (opcode)
that has to be set to IBV_WR_RDMA WRITE for write or IBV_WR_RDMA READ for read operations.
In order to atomically compare and swap a remote 64-bit value, the opcode value has to be
equal to IBV_WR_ATOMIC_CMP_AND_SWP. Setting the field to IBV_WR_ATOMIC _FETCH_AND_ADD

will trigger an atomic increment of the remote value.

In addition to the operation code, the application needs to specify the local buffers that
are used in the operation. Multiple buffers can be used as one logical buffer through the
use of a scatter-gather list. Each element of the list (ibv_sge) contains the virtual address,

length, and local key of the targeted buffer.

In case of one-sided operations, the request needs to contain the address and key of the
remote memory region. In addition, for atomic operations, the work request has to include
the value to compare the remote number against, the replacement value, and/or the value

by which the remote counter needs to be increased or decreased.

struct ibv_sge {
uint64_t addr;
uint32_t length;
uint32_t 1lkey;
g
struct ibv_send_wr {
uint64_t wr_id;
struct ibv_send_wr *next;
struct ibv_sge *sg_list;
int num_sge;
enum ibv_wr_opcode opcode;
int send_flags;
uint32_t imm_data;
union {
struct {
uint64_t remote_addr;

uint32_t rkey;
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} rdma;

struct {
uint64_t
uint64_t
uint64_t
uint32_t

} atomic;

struct {

remote_addr;
compare_add;
swap ;

rkey;

struct ibv_ah *ah;

uint32_t
uint32_t
} ud;
} wr;

};

int ibv_post_send(struct ibv_gp *ap,

ibv_send_wr *xbad_wr);
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Programming with MPI

B.1 Connection Setup

When developing an application with MP1, the complexity of establishing connections is
the responsibility of the library and the MPI runtime. To set up the library, including
connections and data structures, each process executes a single MPI_Init call at the start

of its execution.

int MPI_Init (int *argc, char **xxargv);

It is worth noting, that many MPI implementations running on InfiniBand or ROCE
networks internally use the RDMA Verbs Interface and use a similar method than the one

described in Appendix A for establishing connections.
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B.2 Memory Registration

In MPI1, registered memory is referred to as a window. Memory can either be allocated
through the default allocation mechanisms offered by the operating system (i.e., malloc
and mmap) or through MPpI itself by calling MPI Mem_alloc. The memory is registered with
the network by executing the MPI _Win create method. This call is a collective call, which
means that it has to be executed by every process in the communication group that wants
to perform RMA operations, even if the process does not register memory itself. A second
method, named MPI Win alloc, combines memory allocation and registration.

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info

info, MPI_Comm comm, MPI_Win *win) ;

The MPI_Win object returned by the function represents the collection of memory windows
that were the input to the collective call by all the processes belonging to the specified

communication group.

B.3 Synchronizing Access to Remote Memory

Before any operation can be executed on a window, the processes need to be properly syn-
chronized. MPI provides multiple synchronization mechanisms: MPI Win fence synchro-
nizes all RMA calls on a specific window, such that all incoming and outgoing operations
will complete before the call returns. The period in-between two fence calls is referred to
as an epoch. Because MPI Win fence is a collective call, this type of synchronization is
called active target synchronization. It is useful for applications designed to operate in

distinct rounds where every process goes through the exact same number of epochs.

int MPI_Win_fence(int assert, MPI_Win win);

To allow for applications with more complex communication patterns, MPI provides pas-
sive target synchronization mechanisms through a lock-based mutual exclusion mechanism.

Before an RMA operation on a specific window can be executed, it needs to be locked. The
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lock provides either exclusive (MPI_LOCK_EXCLUSIVE) or concurrent (MPI_LOCK_SHARED) ac-
cess to a buffer. When releasing a lock, the library ensures that all pending RMA operations

have completed both at the origin and at the target before the call returns.

int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win);

To amortize the costs of synchronization, the user should initiate multiple data transfers
per epoch. For shared access, a call exists to lock all memory windows associated with the

window object instead of specifying a target rank and locking each window individually.

B.4 Remote Read, Write, and Atomic Operations

MPp1 provides multiple communication functions, one for each RMA operation. In order
to write data to a remote window, the application invokes MPI_Put, providing the address
of the local buffer, local and remote size and data type, target rank and window object.
The data is then being transferred to the buffer that was registered by the target process
during the collective window allocation operation (see Section B.2). MPI Get provides a

similar interface, but triggers a read operation.

For atomic operations on the other hand, MPI provides a generic method in which the

user can define the function that needs to be executed. In order to create a fetch-and-add

operation, the user invokes the MPI Fetch and op function with the MPI_SUM argument.

Combining the call with MPI REPLACE exchanges the remote value atomically. In addi-

tion to predefined operations, the interface allows the application to use any user-defined

function as an argument to the MPI _Fetch_and op call.

int MPI_Put(const void *origin_addr, int origin_count, MPI_Datatype
origin_datatype, int target_rank, MPI_Aint target_disp, int
target_count, MPI_Datatype target_datatype, MPI_Win win);

int MPI_Get(void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp, int
target_count, MPI_Datatype target_datatype, MPI_Win win);
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int MPI_Fetch_and_op(const void *origin_addr, void *result_addr,
MPI_Datatype datatype, int target_rank, MPI_Aint target_disp, MPI_Op
op, MPI_Win win);
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