Beyond MPI: New Communication Interfaces for
Database Systems and Data-Intensive Applications

Feilong Liu'; Claude Barthels?; Spyros Blanas!, Hideaki Kimura?, Garret Swart?
'The Ohio State University, 2ETH Zurich, 3Oracle Corp.
1{1iu.3222, blanas.2}@osu.edu, 2claudeb@inf.ethz.ch, 3 {hideaki.kimura, garret.swart}@Qoracle.com

ABSTRACT

Networks with Remote Direct Memory Access (RDMA)
support are becoming increasingly common. RDMA,
however, offers a limited programming interface to re-
mote memory that consists of read, write and atomic op-
erations. With RDMA alone, completing the most ba-
sic operations on remote data structures often requires
multiple round-trips over the network. Data-intensive
systems strongly desire higher-level communication ab-

stractions that support more complex interaction patterns.

A natural candidate to consider is MPI, the de facto
standard for developing high-performance applications
in the HPC community. This paper critically evaluates
the communication primitives of MPI and shows that
using MPI in the context of a data processing system
comes with its own set of insurmountable challenges.
Based on this analysis, we propose a new communica-
tion abstraction named RDMO, or Remote Direct Mem-
ory Operation, that dispatches a short sequence of reads,
writes and atomic operations to remote memory and ex-
ecutes them in a single round-trip.

1. INTRODUCTION

Popular high-speed interconnects such as InfiniBand
offer Remote Direct Memory Access (RDMA) sup-
port to accelerate communication. Using RDMA in
a database system is not straightforward: database
systems need to organize their data in such a way
that direct data access mechanisms can be employed
[5]. This entails redesigning data processing algo-
rithms [2], data structures [17], and communication
mechanisms [10, 15]. The Oracle database has been
using RDMA for performance and scalability, but
its use has been limited to operations that do not
require many rounds of messaging, such as access-
ing the Commit Cache and the Undo blocks dur-
ing transaction logging [16]. The fundamental chal-
lenge is the limited programming surface of RDMA
consisting only of message passing, read/write, and
single-word atomic operations.

*Contributed equally.

12

A natural higher-level alternative to consider is
MPI, the de facto standard for developing portable
and highly parallel applications in the HPC com-
munity. MPI has been used in distributed database
systems [6] and to implement scalable join algo-
rithms [3]. At a first glance, one is inclined to be-
lieve that MPI would be a good fit for data pro-
cessing. However, Section 2 shows that MPI is pro-
foundly unsatisfactory for database systems:

e (§2.1) MPI has a process-centric model that lacks
the concept of a thread for multi-threading.

e (§2.2, §2.3) Many MPI operations can only be
performed synchronously (collectively) between a
group of processes. Implementations often use
barrier-like synchronization which exposes com-
munication delays and underutilizes the CPU. In
addition processes cannot dynamically join and
leave groups, which is needed for operations whose
communication pattern is determined by the data.

e (§2.4) For correctness, remote memory operations
need to either acquire coarse-grained locks or man-
ually serialize the execution of operations, akin to
flushing I/0 buffers to persistent storage.

e (§2.5 — §2.7) MPI cannot (1) notify the remote
side of the completion of a memory operation, (2)
convey quality of service (QoS) and traffic differ-
entiation information, and (3) support elasticity,
fault tolerance and high availability.

Instead of adopting MPI, our idea is to augment
RDMA to support the dispatch of simple data pro-
cessing logic in one “unit” to the remote side which
will be executed in one round-trip. We term this a
Remote Direct Memory Operation, or an RDMO.
The RDMO abstraction overcomes limitations of
RDMA when manipulating data structures. Con-
sider the common database operation of inserting
a tuple in a slotted page, shown in Figure 1(a). A
latch-free algorithm checks if there is enough free
space, then atomically modifies the pointer to the
“free” segment of the page, writes the data, and fi-

SIGMOD Record, December 2020 (Vol. 49, No. 4)

V¥ O valid bits 0ps 1ps

4ps Ops

metadata |

Local application \

Local NIC

Local application \ T

Local NIC

RDMA
Read

RDMA-capable
network

}tuple

-

2x
RDMA
Write RDMO-capable
network

SlottedAppend
RDMO
CAS,

Remote NIC

Remote NIC

Remote memory

=)

Remote memory

(a) Append to slotted page.

(b) Append using RDMA.

2xWrite

(c) Append using RDMO.

Figure 1: A Remote Direct Memory Operation, or RDMO, dispatches data processing logic

to the remote side in one “unit”.

nally marks the entry as valid to read. An RDMA
implementation issues the sequence of requests shown
in Figure 1(b). The RDMO implementation issues
a single SlottedAppend RDMO as shown in Fig-
ure 1(c). In this example, the RDMO abstraction
reduces the number of transmitted messages by 4 x
and reduces latency by as much as 2x. Further-
more, the window of a conflict for the atomic oper-
ation is now reduced by 10x. Section 3 introduces
more RDMO examples.

Prior research has proposed other programming
models and abstractions to overcome the shortcom-
ings of MPI. Global Arrays [7] is a programming
model that presents the view of consistent global
memory. Like MPI, it is limited to one-sided Get,
Put, Accumulate and atomic operations that are
oblivious to the payload. A more recent effort is
DPI [1], an interface definition for modern networks
with “flow” and “memory” operations. Like MPI,
DPI does not define mechanisms for pushing com-
putation into the network. We envision that RD-
MOs will be one such mechanism.

2. A CRITIQUE OF MPI

The Message Passing Interface (MPI) is a commu-
nication interface that allows HPC applications to
communicate in an efficient and portable manner.
We evaluate two popular implementations of MPI,
MVAPICH 2.2 [12] and OpenMPI 2.0 [13], on a
cluster connected with InfiniBand FDR (56 Gbps).
We focus on instances where the MPI abstractions
are unsatisfactory for data management.

2.1 Multi-threading support

The unit of parallelism in MPI is a process. The
MPI library controls the binding of processes to
compute cores and hides this binding behind a names-
pace where processes are addressed solely through
their rank number. However, in a database system,
the sender of a message often targets a recipient
based on its position in the local compute topol-
ogy, such as when transmitting to a specific NUMA
node or thread. No mechanism in MPI can address
a message to a specific thread of an MPI process.

SIGMOD Record, December 2020 (Vol. 49, No. 4)

The performance of multi-threaded programs suf-
fers due to contention inside the MPI library. Fig-
ure 2 shows the throughput of MVAPICH on a clus-
ter with two nodes, where one node keeps sending
data to the other with both one-sided and two-sided
functions. In the “multi-process” result, each node
runs 20 separate MPI processes. In the “multi-
thread” result, each node runs 1 MPI process with
20 threads. The multi-threaded MPI performance
is 2% to 20x slower than multi-process MPI.

2.2 Communication groups

Every communication in MPI targets a specific com-
munication group. Within a communication group,
the unit of parallelism is a process which is identified
by a group-specific integer called a rank. To man-
age communication, database systems have to use
different communication groups per operation. Fur-
thermore, the communication patterns in a database
system are often data-dependent. A weakness of
MPIT is that it does not permit processes to join or
leave a communication group at runtime. Creating
new groups at runtime is inefficient: the creation
time is about 30ms with 4 nodes (60 processes) per
group. As a result, MPI groups need to be gen-
erated conservatively to include every process that
could potentially contribute to the result. MPI pro-
cesses that have no data to contribute still have
to participate in remote operations with zero-sized
payloads for synchronization purposes.

2.3 Blocking collective operations
Many MPI operations must be executed synchro-
nously by every process. MPI refers to these oper-
ations as collective operations. Some collective op-
erations are implemented as blocking calls, mean-
ing that a process is only allowed to continue once
all other processes have executed the operation as
well. Examples of collective operations include re-
duce, gather, scatter, and broadcast. Management
operations, such as window allocation and dealloca-
tion, are also implemented as collective operations.
In the context of data management, using block-
ing collectives is problematic due to the inability

13

B RDMA 0O MVAPICH O OpenMPI

5
1

4
1

Throughput (GB/s)
2 3
L1

1
1

0
1

2 nodes 4 nodes 8 nodes 16 nodes

Figure 4: Bypassing MPI and

O Multi-process W Proc0 O Proc2 Proc 4
0 O Mulii-thread @] a Proct Proc 3
m© T o
S 2
o
e g«
= 8
oM —
S J £
F_ .
o o
PUT Send/Recv MVAPICH OpenMPI
Figure 2: MPI per- Figure 3: Collective MPI calls
forms poorly with lead to unpredictable perfor-

multiple threads. mance.
of MPI implementations to interleave communica-
tion with computation. This is exacerbated if pro-
cesses manipulate different amounts of data due to
skew. Consider an MPI_Gather collective opera-
tion among 4 processes. Assume processes 1-4 call
MPI_Gather to send 1 GB of data to process 0. How-
ever, processes 1-2 are late in calling MPI_Gather,
while processes 3-4 call MPI_Gather immediately.
Figure 3 shows the time when each process returns
from the collective call. In the MVAPICH imple-
mentation, MPI_Gather is not blocking, hence pro-
cess 3 and 4 exit the collective call earlier than pro-
cess 1 and 2. However, in the OpenMPI implemen-
tation, MPI_Gather is blocking, so processes 3—4 are
blocked — in fact, they finish after processes 1-2
complete despite starting first. This wastes valu-
able cycles waiting for the collective operation.

2.4 Synchronizing concurrent accesses

RMA operations in MPI are performed on memory
regions referred to as window objects. A window
is a collection of memory regions on which write
(“put”) and read (“get”) operations can be exe-
cuted. MPI provides two mechanisms to synchro-
nize concurrent accesses to the same window.

In active target synchronization, both the origin
and the target synchronize the remote memory ac-
cess by adding a fence (“epoch”) between RMA op-
erations. Pending operations are only guaranteed
to be visible after the epoch completes.

In passive target synchronization, MPI provides a
coarse-grained locking mechanism. Before a remote
memory access can take place, the entire window
must be locked. These accesses are guaranteed to
have completed only when the window is unlocked.
MPI supports two locking modes: an exclusive lock
will only grant access to a specific process to modify
or read the content of the window, whereas a shared
lock allows for concurrent accesses.

The problem of both concurrency control mecha-
nisms is their granularity: locking an entire window
is too coarse-grained and defining every operation

14

directly using RDMA has bet-
ter scalability.

in terms of epochs is too fine-grained. MPI lacks the
sophistication of multi-level locking [8] that lets the
system determine the granularity of access control.

2.5 Composability and low-level access

MPI assumes total control of the underlying hard-
ware and it cannot co-exist harmoniously with low-
level network access mechanisms. Many low-level
optimizations are mutually exclusive with using MPI.
Two examples are:

1. Unreliable datagrams: A database system may
not require ordered data delivery if it is evaluat-
ing a query that does not rely on a sorted order.
In this case, it is acceptable for the network to de-
liver messages out of order. Database systems can
unlock better performance and scalability by us-
ing the Unreliable Datagram (UD) transport [9,
10], a datagram-based protocol similar to UDP
in Ethernet. Figure 4 shows the throughput of a
repartitioning operation that transmits each tu-
ple to a destination node based on the hash value
of its key. Using the UD transport in InfiniBand
has better performance and scalability than the
Reliable Connection (RC) transport that is used
by many MPI implementations.

2. Notified one-sided access: When executing

a query or a transaction, the database system
can perform one-sided RMA operations to place
data at specific locations. For many algorithms,
merely writing the data to remote memory is in-
sufficient and specific operations need to be trig-
gered on the remote side after the data has been
transmitted. Many network interfaces support
notified one-sided RMA accesses to solve this prob-
lem. Exposing this functionality in MPI is a topic
of active research [4], as notified one-sided ac-
cesses are not supported by the MPI standard.

2.6 Traffic differentiation

Many interconnects have the capability to provide
better service to selected network traffic. For ex-
ample, InfiniBand includes quality of service (QoS)

SIGMOD Record, December 2020 (Vol. 49, No. 4)

Table 1: MPI does not differentiate traffic.

MVAPICH OpenMPI RDMA

186.08 0.06 0.03
186.08 167.92 188.99

Short message latency (msec)
Bulk transfer latency (msec)

mechanisms inherently and offers flow prioritiza-
tion. Traffic differentiation is crucial for database
systems as some communications are latency-critical,
such as messages for algorithmic coordination or
transaction processing, while many analytical work-
loads can tolerate higher latency in exchange for
high-bandwidth transfers. However, MPI lacks mech-
anisms to associate quality of service information to
different requests. Database systems are thus rely-
ing on the intricacies of the specific implementation
of MPI they use for timely message delivery.

To quantify this limitation, we initiate a bulk
data transfer (1 GB) and a small latency-critical
message transmission (32 KB) using asynchronous
send/receive calls. Asseen in Table 1, in MVAPICH
the small message is transmitted after the large data
transfer, while both OpenMPI and RDMA transmit
the small message earlier. This experiment shows
that the order in which concurrent messages are de-
livered is implementation-dependent and cannot be
controlled by the database system.

2.7 Elasticity, availability, fault tolerance

The degree of parallelism in MPI is specified when
the application starts and it is fixed for the entire
duration of the program. MPI cannot scale in or
scale out a parallel database deployment, as it lacks
the functionality to add and remove processes from
a running application.

In addition, many HPC applications are started
with a specific lifespan in mind which rarely exceeds
several hours. MPI does not offer fault-tolerance
features as it is expected that every program would
terminate at some point anyway. (In fact, the de-
fault error handler in MPI terminates the entire pro-
gram when a single process fails.) This application-
centric execution model is radically different from
the service-centric model that expects nodes to fail
during the lifespan of a typical deployment. In other
words, a database system should outlast the hard-
ware it is currently running on. In this model, fail-
ures have to be contained and recovered from, and
the communication interface needs to support fault
tolerance and high-availability mechanisms.

3. ANEW ABSTRACTION: RDMO

This section introduces a new abstraction for data-
intensive applications, the Remote Direct Memory
Operation (RDMO) interface. An RDMO is a re-

SIGMOD Record, December 2020 (Vol. 49, No. 4)

quest that triggers the execution of a short sequence
of reads, writes and atomic memory operations that
will be transmitted and executed at the remote node
without interrupting its CPU.

The RDMO communication pattern bridges the
gap between direct memory accesses (RDMA) and
remote procedure calls (RPC). Unlike RDMA and
its fixed set of verbs, the RDMO interface can both
transmit data and execute simple operations on a
remote node. Unlike an RPC call, the RDMO in-
terface limits the ability of the remote operation
to execute too many instructions, access too much
data, or block for too long.

3.1 Implementing RDMOs

The RDMO interface builds on RDMA and reuses
the queue pair (QP) and completion queue (CQ)
objects. Like one-sided RDMA verbs, RDMOs are
transported over a Reliable Connection. Transport
errors and certain operation completion codes can
trigger the server to close the connection.

The RDMO interface deviates when it comes to
the processing of each message, which is shown in
Figure 5. Instead of targeting a memory location
with byte-level reads and writes, an RDMO request
targets an abstract data type (ADT) which is iden-
tified using a capability (a secret identifier). The
RDMO operation must map to a valid method of
the abstract data type. Each operation accepts an
input byte array, and returns a completion code and
an output byte array to the CQ. The format and
meaning of the byte arrays are determined by the
abstract data type method.

When an RDMO-capable endpoint receives the
RDMO request, it is placed in a queue of incom-
ing operations. If the queue is full, the RDMO is
rejected and the client CQ receives an error. The
RDMO is processed when it reaches the head of the
queue. Processing an RDMO starts by mapping
the capability to an instance of an abstract data
type. If there is no such instance, or the identifier
does not map to a method of the abstract data type,
the operation returns with an error. Otherwise, the
appropriate ADT method is invoked.

RDMO-capable

Client ~ —---------omeomeeos
transport
RDMO Endpoint Global RDMO

Request queue Manager Service !

Capability ___ insert Define ADTs ‘

: looki
RDMO dispatch +2=> directory delete

load Register methods <

<€, Local

RDMO method _ store ADT-typed
execution

|

S memory Authenticate <

region

<

Figure 5: Implementing RDMOs.

15

The implementor of an RDMO method must cer-
tify that it is non-blocking. Each RDMO method
has a fixed maximum resource consumption (in cy-
cles) that is provided by the implementor when the
RDMO method is registered on the server. Knowl-
edge of the maximum RDMO resource consumption
allows the RDMO-capable endpoint to bound the
RDMO wait and service time. This avoids the need
of timer signals or call progress acknowledgements
as part of RDMO transport and execution, and re-
duces the overhead on the client and the server.

Limiting RDMO methods in this way during reg-
istration achieves higher availability, because the
completion of an RDMO does not depend (wait)
on other activities of the system. In addition, since
the RDMO implementation can be fully determined
and inlined, it can run outside of the typical applica-
tion environment. This acts as a layer of abstraction
between the endpoint capabilities and the endpoint
implementation: an RDMO-capable endpoint can
run as a separate user process, an interrupt handler
in the OS kernel, a separate VM sharing memory,
an FPGA, or even a special purpose chip.

We emphasize that the RDMO interface is not
meant to replace existing RDMA or RPC interfaces.
To the contrary, the RDMO interface depends on
RDMA and RPC: First, the RDMO interface reuses
key components of the RDMA mechanism. Second,
the RDMO interface requires a higher-level RPC
facility that defines new ADT instances, authenti-
cates agents, and authorizes the use of a given ADT
by creating a RDMO capability.

3.2 Attributes of RDMOs vs. MPI

RDMOs are embedded into a larger context of a
network interface with the following properties:
Multiple Threads: As shown in Section 2.1,
multi-threaded MPI programs suffer from poor per-
formance. MPI connections are bound to processes,
thus making the process rank both a unit of compu-
tation and an address for data accesses. The RDMO
interface implements endpoints that are indepen-
dent of the compute components instead.
Non-Blocking Operations: Section 2.3 shows
that the behavior of MPI depends on the specific
implementation and the blocking implementations
fails to interleave the communication and compu-
tation. All functions of the RDMO interface are
non-blocking such that the initiator of an operation
can interleave communication and computation.
Quality of Service: Section 2.6 shows that MPI
cannot prioritize different communication flows. How-
ever, database systems have to support many types
of workloads that exhibit different communication
patterns and some flows need to be prioritized. The

16

Table 2: Attributes of RDMO operations.

RDMO SChemj‘ Conditional? Message
aware? savings
Slotted Append X v 4X or more
ConditionalGather v v Up to 30x
SignaledRead X v 3X or more
WriteAndSeal X X 2%
ScatterAndAccumulate v v Up to 30x

RDMO interface provides QoS functionality using
the RDMA QoS semantics.

Fault Tolerance: Section 2.7 highlights the lack
of fault tolerance mechanisms in MPI. However,
database systems offer services that must be highly
available. The RDMO interface has a clearly-defined
failure model, inherited by the RDMA interface,
and allows applications to react to failures.

Schema awareness: Database systems operate
on structured data. Pushing down schema infor-
mation to the network using the abstract data type
(ADT) support of RDMOs enables novel in-network
processing applications and operations.

Conditional operations: Conditional opera-
tions allow the developer to evaluate simple if-then
operations in the remote node. For an RDMO oper-
ation with condition check, the remote network card
first evaluates if the remote data is in the specified
state before applying the operation. This eliminates
several round trips and reduces the need for running
expensive synchronization or agreement protocols.

3.3 Five database RDMOs

This section presents five common operations in
database systems that can be accelerated using the
RDMO interface. The attributes of the five RDMO
functions are summarized in Table 2. “Message
savings” represents the number of messages saved
compared with an RDMA implementation of the
same function, if one assumes the same number of
scatter/gather entries per request (30) as provided
by modern InfiniBand network cards. These oper-
ations are used to demonstrate the potential of the
RDMO interface and are not an exhaustive list.

1. SlottedAppend. This is the common oper-
ation of appending a tuple in a buffer, which has
been highlighted in Figure 1(a) in Section 1. In
case of contention, lock conflicts will increase expo-
nentially. Performing this operation as an RDMO
shrinks the conflict window and permits more con-
currency under contention.

2. ConditionalGather. Traversing common data
structures often requires following pointers. This
requires several lookups over RDMA. This RDMO
traverses pointer-based data structures, evaluates
a user-defined predicate and gathers the matching

SIGMOD Record, December 2020 (Vol. 49, No. 4)

location

cas_location

baseaddr
13[Vile}—t5 [Volef—pi1 [V3[e}—t9 [Va[e}— 0.0 150K
COMP value le |
gatherbut BTV sl LI
read_location offset_list scatter_list
Figure 6: ConditionalGather follows Figure 7: SignaledReadcan Figure 8: ScatterAnd-

a linked list of versions, performs vis-
ibility checks and returns the match-
ing tuples in one operation.

elements in a buffer that is transmitted back in a
single request. Up to 30 elements (the gather list)
can be retrieved in a single RDMO request, instead
of one message per element with RDMA.

The ConditionalGather RDMO would be useful
in OLTP workloads when reading versioned tuples,
as shown in Figure 6, where it compares timestamps
for visibility checking and only returns visible ver-
sions in one operation. In an OLAP workload that
involves a join, this RDMO retrieves all tuples in
a hash bucket that match a key in one round-trip.
Short-circuiting the conditional operation performs
projection in the network.

3. SignaledRead. Many data structures use locks
to serialize concurrent operations. Exposing lock-
based data structures over RDMA, however, requires
at least three RDMA requests: two operations tar-
get the lock and one performs the intended oper-
ation. This RDMO saves at least two messages
by “eliding” these lock operations, akin to spec-
ulative lock elision in hardware [14]. As shown
in Figure 7, the SignaledRead RDMO attempts a
compare-and-swap operation. If the swap fails, the
RDMO retries the compare-and-swap a few times
and returns the value of the last read. Else, the
RDMO reads the requested data and resets the flag.

4. WriteAndSeal. This RDMO first writes data
to a buffer, then writes to the seal location to mark
the completion of the write. This would require
two messages in an RDMA implementation. This
RDMO will be used in lock-based synchronization
to update data and release the lock in one operation.

5. ScatterAndAccumulate. This RDMO per-
forms a scatter operation that involves indirect ad-
dressing to the destination through a lookup table,
as shown in Figure 8. Instead of overwriting the
data at the destination, this RDMO accumulates
the transmitted values to what is already present
in the destination address. ScatterAndAccumulate
reduces the substantial network cost of hash-based
parallel aggregation for high-cardinality domains [11].

SIGMOD Record, December 2020 (Vol. 49, No. 4)

elide a lock when reading
any lock-based data struc-
ture in one request.

Accumulate accumulates
elements in the list at
user-defined offsets.

4. CONCLUSIONS

The RDMA communication primitives offered by
fast networks are too low-level and verbose for com-
mon data processing operations. One way to over-
come the complexity of RDMA is to use MPI. Our
analysis shows that MPI lacks many desirable at-
tributes. This paper introduces the Remote Direct
Memory Operation (RDMO) interface which per-
mits a sequence of reads, writes and atomic op-
erations on remote memory to be executed in one
round-trip. Performing five common database oper-
ations as RDMOs cuts down the number of network
round-trips by as much as one order of magnitude.

S. REFERENCES

[1] G. Alonso, C. Binnig, et al. DPI: the data processing
interface for modern networks. In CIDR, 2019.

[2] C. Barthels et al. Rack-Scale In-Memory Join
Processing Using RDMA. In SIGMOD, 2015.

[3] C. Barthels et al. Distributed Join Algorithms on
Thousands of Cores. PVLDB, 2017.

[4] R. Belli and T. Hoefler. Notified Access: Extending
Remote Memory Access Programming Models for
Producer-Consumer Synchronization. In IPDPS, 2015.

[5] C. Binnig et al. The End of Slow Networks: It’s Time
for a Redesign. PVLDB, 2016.

[6] A. Costea et al. VectorH: Taking SQL-on-Hadoop to
the Next Level. In SIGMOD, 2016.

[7] Global Arrays. http://hpc.pnl.gov/globalarrays.

[8] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

[9] A. Kalia et al. Using RDMA Efficiently for Key-value
Services. SIGCOMM, 2014.

[10] F. Liu et al. Design and Evaluation of an
RDMA-aware Data Shuffling Operator for Parallel
Database Systems. In FuroSys, 2017.

[11] F. Liu et al. Chasing similarity: Distribution-aware
aggregation scheduling. PVLDB, 12(3):292-306, 2018.

[12] MVAPICH. http://mvapich.cse.ohio-state.edu/.

[13] OpenMPI. https://www.open-mpi.org/.

[14] R. Rajwar and J. R. Goodman. Speculative Lock
Elision: Enabling Highly Concurrent Multithreaded
Execution. In MICRO, 2001.

[15] W. Rodiger et al. High-speed Query Processing over
High-speed Networks. PVLDB, 2015.

[16] K. Umamageswaran et al. Exadata Deep Dive:
Architecture and Internals. Oracle OpenWorld, 2017.

[17] E. Zamanian et al. The End of a Myth: Distributed
Transaction Can Scale. PVLDB, 2017.

17

